Dry cutting with high-pressure liquid CO2 jets

Eckart Uhlmann, Patrick John*

Chair of Machine Tools and Manufacturing Technology, Institute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Pascalstraße 8-9, Berlin, 10587, Germany

Adv. Mater. Lett., 2019, 10 (1), pp 02-08

DOI: 10.5185/amlett.2019.2231

Publication Date (Web): Dec 10, 2018

E-mail: patrick.john@iwf.tu-berlin.de  


The main advantages of cutting with liquid jets are the flexibility and consistently sharpness of the tool, which allows the machining of a variety of materials and complex shapes. Unfortunately, the humidification of the components can be a problem for certain applications and inhibits the spread of jet technology. Besides, the dry and residue-free cutting of materials is an important topic of today’s research in manufacturing engineering. Due to these advantages, high-pressure liquid CO2 jet cutting has the potential to open new fields of applications in which water jet cutting is not suitable. The liquid CO2 jet with a pressure of up to 300 MPa can be used to machine various materials and functional surfaces before it expands to gas and atmospheric pressure. However, the transition from liquid to gaseous phase implicates density differences which change the cutting performance. As a result, the knowledge about waterjets cannot be adapted to CO2 jets and further investigations are necessary. A new test stand was put into operation and a feed line with abrasives was added. Technological investigations concerning the formation of kerfs with high-pressure liquid CO2 and water jets were performed with and without abrasives as well as subsequently analyzed. The cutting tests were carried out on parts of various metals and technical plastics. The influence of the fluid on the attained cutting surfaces and kerfs produced by the jet was investigated. The experiments indicate that the performance of the CO2 jet as well as of the waterjet depends mainly on pressure and nozzle diameter but show different separation behavior. Especially the impact of the working distance will be discussed. The investigations reveal that high-pressure liquid CO2 jet cutting has a high potential in the field of dry and residue-free cutting of metals, technical plastics and CFRP. Furthermore, no temperature influence was observed and the potential for jet cutting in 3D-applications and for hollow profiles was proven.


Liquid CO2, dry cutting, water jetting.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM