Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Ilaria Meazzini, Massimo Bonini, Francesca Ridi*, Piero Baglioni

Department of Chemistry “Ugo Schiff” & CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy

DOI: 10.5185/amlett.2018.2214

Publication Date (Web): Oct 26, 2018

E-mail: francesca.ridi@unifi.it

Abstract

The paper describes a modular approach based on click chemistry for the surface modification of magnetic oxide nanoparticles and their covalent inclusion within chemical hydrogels. As a proof of concept, we prepared cobalt ferrite nanoparticles and we modified their surfaces through the reaction with molecules bearing a carboxylic function and, alternatively, either an azide or an alkyne moiety. In the second step, the modified nanoparticles were reacted through a Huisgen 1,3-dipolar cycloaddition with a molecule bearing an unsaturated function and either an alkyne or an azide moiety, respectively. Finally, the particles were successfully copolymerized with acrylamide and N,N'-methylenebisacrylamide to obtain a magnetically responsive hydrogel. This approach could be easily extended towards any type of inorganic oxide nanoparticles and their inclusion within any radically co-polymerized hydrogel. 

Keywords

Polymeric nanocomposite, magnetic nanoparticles, click-chemistry, polyacrylamide gel, responsive materials.

Current Issue

Intelligent healthcare for future medicine


Review of nanoscale layered transition metal chalcogenide superconductors


Evaluation of NSAIDs antioxidant activity on lipid peroxidation in splenocyte membranes


Morphological, structural, thermal and degradation properties of polylactic acid-waxy maize starch nanocrystals based nanocomposites prepared by melt processing


Influence of surfactant on the patterning behavior of nanosilver within polyacrylamide nanogels


Cell study of the biomimetic modifications on a CoCrMo alloy for biomedical applications


SPIONs and curcumin co-encapsulated mixed micelles based nanoformulation for biomedical applications


Fabrication of Y2O3 coatings by cold-spray


Triclinic LiVPO4F/C cathode for aqueous rechargeable lithium-ion batteries


PRAP-CVD: Up-scalable process for the deposition of PEDOT thin films


Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films


Effect of silver nanoparticles on the ammonia gas sensing behavior in diphenylamine based conjugated polymer


Study the possibility of using sisal fibres in building applications


Upcoming Congress

Knowledge Experience at Sea TM