Naphthol bis-indole derivative as an anode material for aqueous rechargeable lithium ion battery

R. Anil Kumar2, R. Vijeth Shetty1, 2, G. S.Suresh1*, K. M. Mahadevan2*

1Department of Chemistry and Research Centre, NMKRV College for Women, Jayanagar, Bangalore 560011, Karnataka, India

2Department of Studies and Research in Chemistry, Kuvempu University, PG-Centre, Kadur 577548, Karnataka, India

Adv. Mater. Lett., 2018, 9 (11), pp 823-830

DOI: 10.5185/amlett.2018.2007

Publication Date (Web): Jul 25, 2018

E-mail: sureshssmrv@yahoo.co.in

Abstract


Aqueous or non-aqueous rechargeable lithium ion batteries with organic electrodes as a current carrier can perform effectively sensible and affordable energy storage devices due to large accessibility of organic materials. Here we report a high-performance lithium-based energy storage device using 3,3'-(naphthalen-1-ylmethanediyl)bis(1H-indole) (NBI) as anode material for Aqueous Rechargeable Lithium-ion Battery. The active material is synthesized by condensation between indole and naphthaldehyde under stirring in glacial acetic acid, followed by lithiation by ball milling method. The obtained samples have been characterized by the combination of elemental analysis, NMR, FT-IR and powder XRD. The electrochemical measurements show that the cell Li-NBI | Sat. Li2SO4 | LiFePO4 has been delivered an initial discharge capacity of 113 mAh g−1 at lower current density. At the high current density 75 mAh g−1 discharge capacity can be achieved, which represents its high rate capability. Consequently, the as-prepared Li-NBI could be a potential active species as low-cost anode materials for lithium batteries. The kinetics of electrode reactions under saturated Li2SO4 have been studied by Potentiostatic Electrochemical Impedance Spectroscopic method, show the semi-infinite behaviour at peak potentials. These considerations may be rendering the effective rate performance during charge/discharge process.

Keywords

Aqueous rechargeable lithium-ion battery, cyclic voltammetry, galvanostatic charge potential limit, potentiostatic electrochemical impedance spectroscopy.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM