Polycaprolactone/organoclay biodegradable nanocomposites: dissimilar tendencies of different clay modifiers
Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET - Universidad Nacional de Mar del Plata (UNMdP). Av. Colón 10890, Mar del Plata, 7600, Argentina
Adv. Mater. Lett., 2018, 9 (11), pp 796-804
DOI: 10.5185/amlett.2018.1828
Publication Date (Web): Jul 25, 2018
Copyright © IAAM-VBRI Press
E-mail: luduenaunmdp@gmail.com
In this work, biodegradable nanocomposites based on polycaprolactone (PCL) reinforced with 2.5, 5.0 and 7.5 wt.% of two different clays, a commercial organo-clay (Cloisite 20A, C20A) and a laboratory modified bentonite with tributylhexadecyl phosphonium bromide (bTBHP), were prepared by melt intercalation followed by compression molding. The study contemplates the analysis of chemical (Infrared Spectrometry, FTIR), morphological (X-Ray Diffractometry, XRD, Scanning Electron Microscopy, SEM, and Transmission Electron Microscopy, TEM), rheological, thermal (Differential Scanning Calorimetry, DSC, and Thermogravimetrical Analysis, TGA) and mechanical properties (tensile tests), which are important properties for packaging applications.In previous works, we concluded that higher clay dispersion degree inside the PCL matrix is expected when clays with large interlayer distance, strong hydrophobicity and strong processing stability are used. In the present work, the opposite result was obtained. Although the phosphonium treated clay (bTBHP) showed the largest interlayer distance (d001), strongest hydrophobicity and the best processing stability, the clay dispersion degree inside PCL was worse than in the case of the alkylammonium treated clay (C20A). PCL/bTBHP nanocomposites showed weaker mechanical properties in comparison with PCL/C20A ones, which is in accordance with the morphological analysis. On the other hand, the thermal properties of the matrix were not substantially affected by clay incorporation in both nanocomposites.
Nanocomposites, compatibility, biodegradable polymer, bentonite, montmorrillonite.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India