Design of FES based muscle stimulator device using EMG and insole force resistive sensors for foot drop patients
Department of Information Engineering, University of Brescia, Via Branze 38, Brescia, 25123, Italy
Adv. Mater. Lett., 2018, 9 (11), pp 776-780
DOI: 10.5185/amlett.2018.2170
Publication Date (Web): Jul 24, 2018
Copyright © IAAM-VBRI Press
E-mail: m.khan004@unibs.it
In the presented research, design of functional electrical stimulation (FES) based muscle stimulator device has been described which is used to correct and enhance the gait activity of foot drop patients. The device mainly comprises of FES unit for electrical pulse generation, an electromyography (EMG) sensor V3 for feedback system and insole force-sensitive resistive sensors (FSR) to control ON/OFF timing of device. The device controls the ankle flexion without excessive eversion or inversion of foot (i.e. balanced flexion) by stimulation of common peroneal nerve and tibialis anterior muscle (TA). The efficiency of device is assessed by evaluating gait temporal and spatial parameters (TSP’s) and 3-dimensional gait kinematics (ankle flexion) of footdrop patients by “Peak Motus Motion Measurement System”. It has been found that use of FES stimulator increases the walking speed by 19%, cadence by 7%, step length by 11% and stride length by 15.5%. In addition, it is also observed that stride time, stance time, step time, single support time and double support time is decreased by 5%, 17%, 22%, 15% and 18% respectively. Moreover, kinematics analysis of foot shows that the device prevented the footdrop up to 30° by controlling the ankle flexion and extension magnitude. Thus, the obtained results suggest that the proposed FES based stimulator device provides enough stimulation to peroneal nerve required for stable gait activity of footdrop patients.
Foot drop, functional electrical stimulation (FES), muscle stimulator device, force-sensitive resistive sensors (FSR), gait temporal and spatial parameters (TSP&rsquo,s), 3-dimensional gait kinematics, tibialis anterior muscle, peroneal nerve.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India