Behavior of EB FRP masonry bond under service temperature
1Graduate Research Student: Civil, Arch. and Envir. Engr, Missouri University of Science and Technology, Rolla, MO 65409, USA
2Professor of Civil, Arch. and Envir. Engineering and Associate Dean, Missouri University of Science and Technology, Rolla, MO 65409, USA
3Curators Distinguished Professor of Mechanical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
Adv. Mater. Lett., 2018, 9 (11), pp 753-759
DOI: 10.5185/amlett.2018.2152
Publication Date (Web): Jul 24, 2018
Copyright © IAAM-VBRI Press
E-mail: jmyers@mst.edu
The interest in advanced composites in repairing and strengthening infrastructure systems has considerably increased, especially as the application externally bonded (EB) fiber reinforced polymer (FRP) has become more well established. Previous research on bond behavior has focused on impact of durability by considering exposure to harsh environmental conditions and testing the specimens after exposure, rather than testing bond performance during exposure. The influence of directly applying temperature on bond behavior represents an open topic that needs to be investigated in more detail. This study is one of the first studies to investigate the bond behavior when the composite is subjected to tension force simultaneously with applying temperature. The temperatures considered in this study were at freezing, ambient, and high temperature, which are more representative of structural elements under field conditions. A total of 16 specimens were strengthened and tested under single-lap direct shear. The key parameters investigated include (a) the type of fiber [laminate carbon vs. wet layup glass] (b) the level of temperature applied on specimen, including ambient condition 21°C (70 °F), freeze condition -18 °C (0 °F) and hot weather 49 °C (120 °F), and (c) the exposure regime (direct exposure during loading process vs. loading after exposure). Most of the specimens were subjected to tension force simultaneously with applying temperature, and the other specimens were later tested after exposure to the heating and cooling cycles. These cycles are proposed to simulate 20 years of the typical in-situ weather conditions in the Central United States. The results showed that overall the EB strengthening systems exhibited good performance when subjected to cycles of heating and cooling prior to testing. High reduction of FRP-epoxy bond properties was up to 59% when exposed to high service temperatures. Different modes of failure were observed such as debonding at fiber-matrix interface and debonding due to shearing in laminate.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India