Cover Page November-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 11, Pages 753-759, November 2018
About Cover

Cover page describe the Typical fracture surface of nuclear graphite blocks after irradiation (cracks occur during reactor operation). This picture Summarize the Fractographic studies of GR-280 nuclear graphite after irradiation up to neutron fluence above the turnaround dose (with a decrease in of the mechanical properties to the values close to the initial one after primary radiation-induced increase) showed along with the presence of transcrystalline fracture, appearance of intercrystalline fracture regions along the “filler-binder” type boundaries.


Behavior of EB FRP masonry bond under service temperature

Zuhair Al-Jaberi1, John J. Myers2*, K. Chandrashekhara3

1Graduate Research Student: Civil, Arch. and Envir. Engr, Missouri University of Science and Technology, Rolla, MO 65409, USA

2Professor of Civil, Arch. and Envir. Engineering and Associate Dean, Missouri University of Science and Technology, Rolla, MO 65409, USA

3Curators Distinguished Professor of Mechanical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

Adv. Mater. Lett., 2018, 9 (11), pp 753-759

DOI: 10.5185/amlett.2018.2152

Publication Date (Web): Jul 24, 2018

E-mail: jmyers@mst.edu

Abstract

The interest in advanced composites in repairing and strengthening infrastructure systems has considerably increased, especially as the application externally bonded (EB) fiber reinforced polymer (FRP) has become more well established. Previous research on bond behavior has focused on impact of durability by considering exposure to harsh environmental conditions and testing the specimens after exposure, rather than testing bond performance during exposure. The influence of directly applying temperature on bond behavior represents an open topic that needs to be investigated in more detail. This study is one of the first studies to investigate the bond behavior when the composite is subjected to tension force simultaneously with applying temperature. The temperatures considered in this study were at freezing, ambient, and high temperature, which are more representative of structural elements under field conditions. A total of 16 specimens were strengthened and tested under single-lap direct shear. The key parameters investigated include (a) the type of fiber [laminate carbon vs. wet layup glass] (b) the level of temperature applied on specimen, including ambient condition 21°C (70 °F), freeze condition -18 °C (0 °F) and hot weather 49 °C (120 °F), and (c) the exposure regime (direct exposure during loading process vs. loading after exposure). Most of the specimens were subjected to tension force simultaneously with applying temperature, and the other specimens were later tested after exposure to the heating and cooling cycles. These cycles are proposed to simulate 20 years of the typical in-situ weather conditions in the Central United States. The results showed that overall the EB strengthening systems exhibited good performance when subjected to cycles of heating and cooling prior to testing. High reduction of FRP-epoxy bond properties was up to 59% when exposed to high service temperatures. Different modes of failure were observed such as debonding at fiber-matrix interface and debonding due to shearing in laminate.

Keywords

Masonry, bond, FRP, temperature, durability.

Current Issue

Current Global Scenario of Electric Vehicles


Review on Detection of Phenol in Water 


Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review


Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight


Plasma Activated Water as a Source of Nitrogen for Algae Growth


Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application


Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System


Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources


Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method


Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance


Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye


Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 


Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect


Previous issues

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM