Multilayer ceramics as integration platform for sensors in in-vitro cell culture reactors

Heike Bartsch1*, Martin Baca2, Uta Fernekorn2, Marcel Himmerlich3, Jens Müller1, Andreas Schober2, Hartmut Witte4

Technische Universität Ilmenau, IMN MacroNano®, Ilmenau, 98693, Germany

1Electronics Technology Group
2Nano-Biosystems Technology Group 
3Technical Physicist Group
4Biomechatronics Group​

Adv. Mater. Lett., 2018, 9 (11), pp 748-752

DOI: 10.5185/amlett.2018.2090

Publication Date (Web): Jul 24, 2018

E-mail: heike.bartsch@tu-ilmenau.de

Abstract


Monitoring systems that are capable to record neuronal activity in in-vitro cell cultures are prerequisite to the comprehensive investigation of neuronal processes. Low temperature cofired ceramics are a suitable platform for rapid prototyping of biological reactors, entailing a wide assortment of integration-capable sensors. Neuronal spikes capture is fundamental for understanding of the signal propagation within the neuronal network. It requires reliable electrodes, which can be arranged 3-dimensionally in an in vitro cell culture. Thick film gold electrodes have been proven for such applications, however their characteristics especially at small dimensions stray strongly. This work investigates thin films separating small thick film gold electrodes and an electrolyte solution with regard to their influence on the charge transport processes in such systems. PEDOT:PSS layer and TiOxNy deposited on LTCC gold electrodes, including their impedance characteristics are discussed and compared. TiOxNy layers with serial resistance Rs of 32 kΩ and serial capacitance Cs of 4.1 pF measured at 1 kHz are proposed to be the used as sensing elements in 3-dimensional in vitro cell cultures.                                                                       

Keywords

Bio-reactors, low temperature co-fired ceramics, LTCC, thick film technology, sensor integration.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM