Redox-active cerium oxide based nanozyme abrogate the organophosphate mediated poisoning in mammalia
Division of Biological and Life Sciences, School of Arts and Science, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
Adv. Mater. Lett., 2018, 9 (10), pp 737-747
DOI: 10.5185/amlett.2018.1939
Publication Date (Web): Jul 18, 2018
Copyright © IAAM-VBRI Press
E-mail: sanjay.singh@ahduni.edu.in
Owing to the autocatalytic antioxidant activity, cerium oxide nanoparticle (CeNPs) has been extensively used in biomedical fields for treatment of neurodegenerative diseases, biosensing, and therapeutic applications. The redox-dependent interconversion between +3 and +4 oxidation states of CeNPs is suggested to be the reason of scavenging of free radical generated in the biological system. Herein we have explored the protective effect of CeNPs against the oxidative stress induced by organophosphate-based pesticide, 2,2-dichlorovinyl dimethyl phosphate (DDVP), in a normal human liver cell culture model (WRL-68). DDVP is known to cause the toxic effect in cells by inducing lipid peroxidation, cellular glutathione level depletion and DNA fragmentation by the caspase-dependent pathway. We followed the protection of cells by CeNPs against DDVP exposure using MTT and NRU assays. Exposure of DDVP to cells induced significant nuclear fragmentation, which could be avoided in cells pre-treated with CeNPs. Mechanistically, we observed that CeNPs induces an increase in cellular GSH level, which could assist in removal of excess of reactive oxygen species, generated in DDVP exposed cells, along with the superoxide dismutase (SOD)-like activity of CeNPs. The interaction study showed that there was no chemical interaction between DDVP and CeNPs, therefore, the intrinsic SOD-like activity of CeNPs was intact even in the complex cell culture media. Growing evidence suggest that excess use of DDVP could lead to the several diseases in cells/tissues, therefore our finding emphasizes that CeNPs can be used as a potent antioxidant agent to avoid the ramifications of DDVP and other commercial pesticides.
Nanozymes, superoxide-dismutase, organophosphate, Dichlorvos Pesticide (DDVP), antioxidant nanoparticles, oxidative stress.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India