1Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI 1000 Ljubljana, Slovenia
2Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Jamova 39, SI-1000 Ljubljana, Slovenia
3Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
4Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
6Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9 5, SI-1000 Ljubljana, Slovenia
Adv. Mater. Lett., 2018, 9 (10), pp 708-714
DOI: 10.5185/amlett.2018.2024
Publication Date (Web): Jul 18, 2018
Copyright © IAAM-VBRI Press
E-mail: metka.bencina@ijs.si
The photocatalytic activity of TiO2 nanotubes (NTs) makes these materials promising candidates for a variety of applications, including photocatalytic degradation, water splitting and biomedical devices. The large band gap of TiO2 (anatase ∼3.2 eV; rutile ∼ 3.0 eV) requires excitation with UV light, which accounts for only a small fraction of solar light. In order to increase the light absorption in the visible region, reduction of the band gap is required. Here, TiO2 nanotubes (NTs) were fabricated by electrochemical anodization of Ti foil. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and X-ray photoemission spectroscopy (XPS) were used to determine morphology, crystal structure and surface composition of the TiO2 NTs. Different synthesis conditions influenced TiO2 NTs properties that allowed the tuning of the band gap. UV-Vis analysis of 61.54 µm long NTs showed light absorption over the whole visible range, while NTs with the length up to 0.21 µm are able to absorb only UV light. 61.54 µm long NTs exhibited band tailing up to 1.43 eV.
TiO2 nanotubes, electrochemical anodization, visible light absorption, band gap.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study