Development of advanced aerogel-based composite material with high performance for building industry

Marina Stipetic1*, Jürgen Frick2, Manuela Reichert2

1Mineral Building Materials, Materials Testing Institute, Otto-Graf-Institute, University of Stuttgart, Pfaffenwaldring 4c, Stuttgart, 70569, Germany

2Research and Development, Materials Testing Institute, Otto-Graf-Institute, University of Stuttgart, Pfaffenwaldring 4c, Stuttgart, 70569, Germany

Adv. Mater. Lett., 2018, 9 (9), pp 632-637

DOI: 10.5185/amlett.2018.2087

Publication Date (Web): Jun 14, 2018

E-mail: marina.stipetic@mpa.uni-stuttgart.de

Abstract


According to the European Commission's plan, greenhouse gas emissions in the European Union must be reduced by 80% compared to the level from year 1990 (see [1]). In order to reduce the energy consumption of the buildings, an optimization of the building insulation is an effective measure. Super-insulating materials are promising materials to fulfil these objectives. Present work describes development of advanced aerogel-based composite material with small thickness. Such composite materials based on silica aerogel can be extremely efficient with regard to their thermal insulation properties. In this study, the experimental investigations of hydrothermal and mechanical performance were conducted on the aerogel-based insulation blanket and its constituents (core material and aerogel granules). Furthermore, the effect of ageing to performance of such material is assessed. The developed aerogel-based insulation material is characterized by very low thermal conductivity (under 18.0 mW/(m·K)) and good hydrothermal properties. It has been shown here that the thermal conductivity of an insulating material made of glass fibre can be reduced to more than half with using of aerogel granules. This aerogel-based composite material is characterized by good hydric properties. The material is both hydrophobic and water vapor permeable. In addition, mechanical properties of new composite material fulfil the multifunctional application of this promising insulating material. New product can be used for external thermal insulation system (ETICS) as well as for internal thermal insulation system.

Keywords

Aerogel, insulation, composite material, hydrothermal, mechanical, ageing.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM