Understanding the applicability of natural fibre composites in hybrid folded structures

Avishek Chanda*, Debes Bhattacharyya 

Center for Advanced Composite Materials, Department of Mechanical Engineering, The University of Auckland, Auckland, 1010, New Zealand

Adv. Mater. Lett., 2018, 9 (9), pp 619-623

DOI: 10.5185/amlett.2018.2073

Publication Date (Web): Jun 14, 2018

E-mail: acha553@aucklanduni.ac.nz


One of the important by-products of wood is veneer sheets which can be pressed together to form plywood. Also known as radiata pine veneer, plywood has been increasingly used in different engineering applications and its unique thin structure, with significant mechanical properties, has increased its demand for hybrid deformed structures. The main scope of the present work is to understand the formability characteristics of the plywood with multiple bend axis on the same plane. The properties of wood nullify the normal bending process due to the significant amount of spring-back for the inherent properties of the constituent natural fibres bounded by a predominant lignin component. The process of in-situ curing and post-forming curing were used to achieve the desired folds. Experiment was performed on various plywood samples, with 4-point bending rig, to understand the variation in stress and strain due to variable distances between the bends and the maximum post-curing time. Finally, the overall spring-back analytically varied by 1.96%. 


4-Point bending, forming of 3-ply laminates, spring-back, spring-forward, structural significance of plywood.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM