Cover Page August-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 8, Pages 594-601, August 2018
About Cover


Naphthol bis-indole derivative as an anode material for aqueous rechargeable lithium ion battery

R. Anil Kumar2, R. Vijeth Shetty1, 2, G. S.Suresh1*, K. M. Mahadevan2*

1Department of Chemistry and Research Centre, NMKRV College for Women, Jayanagar, Bangalore 560011, Karnataka, India

2Department of Studies and Research in Chemistry, Kuvempu University, PG-Centre, Kadur 577548, Karnataka India

Adv. Mater. Lett., 2018, 9 (8), pp 594-601

DOI: 10.5185/amlett.2018.2029

Publication Date (Web): Jun 14, 2018

E-mail: sureshssmrv@yahoo.co.in

Abstract

Aqueous or non-aqueous rechargeable lithium ion batteries with organic electrodes as a current carrier can perform effectively sensible and affordable energy storage devices due to large accessibility of organic materials. Here we report a high-performance lithium-based energy storage device using 3,3'-(naphthalen-1-ylmethanediyl)bis(1H-indole) (NBI) as anode material for Aqueous Rechargeable Lithium-ion Battery. The active material is synthesized by condensation between indole and naphthaldehyde under stirring in glacial acetic acid, followed by lithiation by ball milling method. The obtained samples have been characterized by the combination of elemental analysis, NMR, FT-IR and powder XRD. The electrochemical measurements show that the cell Li-NBI | Sat. Li2SO4 | LiFePO4 has been delivered an initial discharge capacity of 113 mAh g−1 at lower current density. At the high current density 75 mAh g−1 discharge capacity can be achieved, which represents its high rate capability. Consequently, the as-prepared Li-NBI could be a potential active species as low-cost anode materials for lithium batteries. The kinetics of electrode reactions under saturated Li2SO4 have been studied by Potentiostatic Electrochemical Impedance Spectroscopic method, show the semi-infinite behaviour at peak potentials. These considerations may be rendering the effective rate performance during charge/discharge process.

Keywords

Aqueous rechargeable lithium-ion battery, cyclic voltammetry, galvanostatic charge potential limit, potentiostatic electrochemical impedance spectroscopy.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM