Mechanism of destruction of benzoyl peroxide on surface of sp2-type carbon nanomaterials

Mykola Kartel1*, 2, Liudmyla Karachevtseva2, 3, Wang Bo2, Daryna Haliarnyk1, Olga Bakalinska1, Tetyana Kulyk1, Borys Palyanytsya1, Yevgen Demianenko1, Anatoliy Grebenyuk1, Volodymyr Kuts1

1Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Street, Kyiv 03164 Ukraine

2China-Central and Eastern Europe International Science and Technology Achievement Transfer Center, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China

3Department of Photonic Crystals, V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Prospect Nauki, Kyiv 03028, Ukraine

Adv. Mater. Lett., 2018, 9 (6), pp 450-455

DOI: 10.5185/amlett.2018.1965

Publication Date (Web): May 17, 2018



The possible mechanisms of decomposition of benzoyl peroxide were investigated by the method of density functional theory with the exchange-correlation functionality of B3LYP, a basis set of 6-31G (d, p). It was carried out a comparative analysis of the quantum chemical calculations of the electronic structure of carbon nanoclusters simulating the active surface of sp2 carbon materials, including their modifications by the heteroatoms N and O. The energy parameters of the benzoyl peroxide molecule and all possible products of its decomposition, as well as the interaction of the free radical Ph-COO• with model graphite-like nanoclusters were considered. The calculations are compared with the experimental results of the catalytic activity of the varieties of activated charcoal and the catalase enzyme in the reaction of the benzoyl peroxide decomposition in a non-aqueous medium. It has been established that in the benzoyl peroxide molecule, regardless of the polarity of the medium, the weakest is the bond (O-O). The greatest ability to decompose benzoyl peroxide, which is much larger than that of catalase, was detected on the N-containing carbonaceous materials. It is shown that the free radical Ph-COO• is lighter and kinetically, and thermodynamically interacted with the graphite-like plane of the model N-containing carbon nanoclusters.


Carbon materials, benzoyl peroxide, catalytic activity, reaction mechanism, quantum chemistry, density function theory method, cluster approximation.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM