Mechanism of destruction of benzoyl peroxide on surface of sp2-type carbon nanomaterials

Mykola Kartel1*, 2, Liudmyla Karachevtseva2, 3, Wang Bo2, Daryna Haliarnyk1, Olga Bakalinska1, Tetyana Kulyk1, Borys Palyanytsya1, Yevgen Demianenko1, Anatoliy Grebenyuk1, Volodymyr Kuts1

1Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Street, Kyiv 03164 Ukraine

2China-Central and Eastern Europe International Science and Technology Achievement Transfer Center, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China

3Department of Photonic Crystals, V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Prospect Nauki, Kyiv 03028, Ukraine

Adv. Mater. Lett., 2018, 9 (6), pp 450-455

DOI: 10.5185/amlett.2018.1965

Publication Date (Web): May 17, 2018

E-mail: nikar@kartel.kiev.ua

Abstract


The possible mechanisms of decomposition of benzoyl peroxide were investigated by the method of density functional theory with the exchange-correlation functionality of B3LYP, a basis set of 6-31G (d, p). It was carried out a comparative analysis of the quantum chemical calculations of the electronic structure of carbon nanoclusters simulating the active surface of sp2 carbon materials, including their modifications by the heteroatoms N and O. The energy parameters of the benzoyl peroxide molecule and all possible products of its decomposition, as well as the interaction of the free radical Ph-COO• with model graphite-like nanoclusters were considered. The calculations are compared with the experimental results of the catalytic activity of the varieties of activated charcoal and the catalase enzyme in the reaction of the benzoyl peroxide decomposition in a non-aqueous medium. It has been established that in the benzoyl peroxide molecule, regardless of the polarity of the medium, the weakest is the bond (O-O). The greatest ability to decompose benzoyl peroxide, which is much larger than that of catalase, was detected on the N-containing carbonaceous materials. It is shown that the free radical Ph-COO• is lighter and kinetically, and thermodynamically interacted with the graphite-like plane of the model N-containing carbon nanoclusters.

Keywords

Carbon materials, benzoyl peroxide, catalytic activity, reaction mechanism, quantum chemistry, density function theory method, cluster approximation.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM