1School of Engineeing and Advanced Technology, Massey University, Riddet Road, Palmerston North 4410, New Zealand
2 SAXS/WAXS, Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
3Leather and Shoe Research Association, Dairy Farm Road, Palmerston North 4414, New Zealand
Adv. Mater. Lett., 2018, 9 (6), pp 411-418
DOI: 10.5185/amlett.2018.1844
Publication Date (Web): May 17, 2018
Copyright © IAAM-VBRI Press
E-mail: r.haverkamp@massey.ac.nz
Collagen based soft materials are important as medical materials and as consumer products. Strength is a crucial parameter. A better understanding of the structural factors that contribute to strength is sought. Synchrotron based small angle X-ray scattering was used to characterize the collagen fibril structure and structural arrangement in a range of collagen based materials including leather, surgical scaffold materials and glutaraldehyde stabilized pericardium. Structure was compared with strength and was also characterized during strain. When collagen fibrils are orientated in a highly layered structure (with a high orientation index) the materials exhibit higher tear strength. This applies to leather, surgical scaffolds derived from dermis and pericardium. A more layered structure is found in stronger leather, and depends on the species of the source animal and processing conditions. For surgical scaffolds and stabilized pericardium stronger material is found also to have a more layered structure. In pericardium it is affected by the age of the source animal with younger animals having a more layered fibril arrangement in the pericardium. When collagen based soft materials are strained, the material responds first by a reorientation of the fibrils then by extension of individual fibrils, and this enables them to withstand high stresses.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study