Investigation of new antifrictional/frictional nanocomposites based on PTFE matrix filled with Fe-doped carbon nanoparticles

Elguja Kutelia1*, David Gventsadze2, Olga Tsurtsumia1, Leri Rukhadze1, Nikoloz Jalabadze1, Tengiz Kukava1, Teimuraz Dzigrashvili1

1Republic Centre for Structure Researches of Georgian Technical University, 77 Kostava str., Tbilisi 0175, Georgia

2R. Dvali Institute of Machine Mechanics, 10 Mindeli str., Tbilisi 0186, Georgia

Adv. Mater. Lett., 2018, 9 (5), pp 320-325

DOI: 10.5185/amlett.2018.1988

Publication Date (Web): May 17, 2018



The present work is dealing with the study of a nano-compositional material which was obtained on the basis of PTFE with 2.5÷10wt% of core-shell type Fe-doped carbon nano-tubes and carbon nano-particles as fillers. The PTFE samples without the fillers were prepared too. Weight wear, friction coefficient and temperature were measured after passing some velocity steps, and afterwards the linear wear was calculated. The obtained results have shown that the incorporation of about 2,5÷5wt% of Fe-doped CNTs into PTFE matrix drastically improves the antifrictional properties in comparison to the unfilled PTFE. Namely, the wear resistance of these nanocompositions increased by the factor of 500-150 in the range of friction velocities 0.25÷1.25 m/sec. Increase of the filler portion up to 10wt% transforms the obtained nanocomposite from antifrictional to friction material with the enhanced coefficient of friction up to 0.32, but with the unexpectedly ultra-low wear. SEM-EDX analyses of the worn surfaces of the tested nanocomposites and the cast iron samples after working as a tribological pair, revealed some favorable effects of the Fe-doped CNTs filler on the formation mechanism of a transfer film and its role in promoting very low wear of the obtained new nanocomposites.


Nanocomposite polymer, PTFE, Fe-doped CNT, transfer film.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM