Plasmonic sensor for evaluation of the neuropeptides level in the human fluids  

Alexander Axelevitch*

Engineering Faculty, Holon Institute of Technology (HIT), 52 Golomb St., Holon, 5810201, Israel

Adv. Mater. Lett., 2018, 9 (4), pp 306-310

DOI: 10.5185/amlett.2018.1983

Publication Date (Web): May 17, 2018

E-mail: alex_a@hit.ac.il

Abstract


One of important problems in the diagnostic and treatment of the patient’s states is operative evaluation of a type and amount of various neuropeptides secreted into the blood in human organisms. Due to similar structures and molecular weight of neuropeptides, their identification and individual evaluation is very complicated and not always consistent. For example, such substances as Oxytocin and Argenine-Vasopressin act differently on the human body, however they are look similar. The main purpose of the present work is to create a non-destructive sensor enabling operatively differentiate and evaluate the quantity of various neuropeptides existing in the human fluids such as sweat, saliva or blood. Through the experimental and theoretical efforts, it was found that the proposed goal may be solved using nanostructured semiconductor sensor producing the plasmon-polaritons in the near ultra-violet range. The frequency and intensity of generated plasmons are affected by material composition of the studied analyte.

Keywords

Oxytocin, vasopressin, plasmonic sensor, spectral characterization.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM