Ternary hybrid electrode material based on polyaniline/carbon nanohorn/TiO2 with high performance energy storage capacity

Sandip Maiti, Sumanta K. Karan, Amit K. Das, Ranadip Bera and Bhanu B. Khatua*

Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Adv. Mater. Lett., 2018, 9 (4), pp 234-240

DOI: 10.5185/amlett.2018.1763

Publication Date (Web): May 17, 2018

E-mail: khatuabb@matsc.iitkgp.ernet.in


Renewable energy is very much demanding in modern time. Herein, we have discussed energy storage performance of polyaniline (PANI) and carbon nanohorn (CNH) decorated titanium dioxide (TiO2) nanoparticle, high-performance electrode material. This high-performance energy storage material was prepared through simple and cost-effective method via in-situ polymerization of aniline in presence of CNH and TiO2 nanoparticles. Thus, as prepared active electrode material provides high specific capacitance value of 1068 F/g at current density of 3 A/g. The existence TiO2 nanoparticle in the ternary hybrid leads to enhancement of capacitance value through synergistic effect compared to the pure components (e.g., PANI and CNH are 335 F/g and 240 F/g, respectively at same current density). As morphological analysis says, TiO2 nanoparticles are observed to be coated by CNH nanofiller and PANI fiber in the hybrid, which plays a key role to enhance the capacitance value of hybrid making it highly promising electrode material for energy storage in the next-generation power supply. 


Supercapacitor, polymer hybrid composite, high energy storage, polyaniline, carbon nanohorn, TiO2.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM