Stacking patterns and carrier mobilities of GeS bilayer

Fazel Shojaei1, Hong Seok Kang2*

1Department of Chemistry and Bioactive Material Sciences and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea

2Department of Nano and Advanced Materials, College of Engineering, Jeonju University, Hyoja-dong, Wansan-ku, Chonju, Chonbuk 560-759, Republic of Korea

Adv. Mater. Lett., 2018, 9 (3), pp 205-210

DOI: 10.5185/amlett.2018.1858

Publication Date (Web): May 16, 2018

E-mail: hsk@jj.ac.kr

Abstract


Based on the first-principles calculations, we identify four stacking patterns of the GeS bilayer, in which two most stable ones are almost equally stable. The most stable one corresponds to the experimental pattern in bulk GeS.  Its interlayer binding is stronger than those in a-phosphorene and graphene, indicating that the material will rather exist in the form of bilayers or multilayers. Our HSE06 band structure calculations show that both patterns are semiconductors with indirect band gaps in the visible region, which are slightly smaller than that of the monolayer. For the monolayer, our refined calculation based on the deformation potential approximation indicates that the electron mobility along the armchair direction amounts to 4.62×104 cm2 V-1s-1, which is ~40 times larger than that of the a-phosphorene. The electron mobility of the bilayer is dependent on the stacking pattern. The most stable pattern is expected to exhibit the mobility of 1.69×104 cm2V-1s-1, which is still ~30 times larger than that of the bilayer a-phosphorene. A detailed comparison of the carrier mobilities suggests that both of the mono- and bi-layer will be useful for n-type electronics.

Keywords

First-principles calculation, bilayer formation, band gap, stacking pattern, deformation potential method, carrier mobility.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM