Magnetic and dielectric properties of divalent Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles
Department of Physics, Sri Venkateswara University, Tirupati 517 502, India
Adv. Mater. Lett., 2018, 9 (3), pp 175-181
DOI: 10.5185/amlett.2018.1411
Publication Date (Web): May 16, 2018
Copyright © IAAM-VBRI Press
E-mail: vijayaraguru@gmail.com
Pristine BiFeO3 (BFO) and Ca doped BiFeO3: Ba nanoparticles (NPs) were synthesized in aqueous solution by sol-gel method with Tartaric Acid as a chelating agent. EDAX measurements confirmed the presence of Ca, Ba in the BiFeO3 host lattice. X-ray diffraction analysis showed that the average grain size of the prepared samples was in the range of 09–28 nm. The lattice structure of the nanoparticles transformed from rhombohedral to tetragonal phase with Ca2+ ions substitution increased. TEM images indicated that sphere and square shape of nanoparticles through a size ranging from 10 to 15 nm. Diffusion reflectance spectra of BiFeO3 NPs showed a substantial blue shift of ~100 nm (630 nm -> 530 nm) on Ca, Ba co-doping which corresponds to increase in band gap by 0.47 eV. Dielectric constant (ε’) and dielectric loss (ε’’) were measured in the frequency range 1 Hz to 1 MHz at room temperature. Dielectric constant and loss are increased with Ca concentration except for Ca (4 at. %). The bulk conductivity (σ) increases from 3.07 x 10-6 S/m to 1.64 x 10-5 S/m as the Ca concentration increased from 0.00 to 0.03. Magnetic measurements revealed the ferromagnetic character of Pristine BFO and Ca doped BiFeO3: Ba samples. It is observed that by increasing the Ca concentration the value of Mr and magnetization are varied irregularly upto Ca (4 at. %). But for x = 0.01 Mr and magnetization are highest. The values of magnetization and Mr for 1% Ca doped BiFeO3: Ba NPs are 2.99 emu/g, 1.54 emu/g, respectively, which are quite significant at room temperature. These materials have potential applications in data storage, switching devices, spintronics, sensors and microelectronic.
Sol-Gel method, Ca doped BiFeO3: Ba, band gap studies, magnetic properties, dielectric properties.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India