Chitosan bio-functionalization of carbon nanotube arrayed electrode

Hadar Ben-Yoav1*, Marshall A. Schroeder2, Malachi Noked3

Adv. Mater. Lett., 2017, 8 (12), pp 1166-1170

DOI: 10.5185/amlett.2017.1577

Publication Date (Web): Sep 08, 2017


Nanostructured electrodes enable a new generation of electrochemical sensors by increasing their surface area that lead to stronger signals generated by electrochemically-active molecules, such as diagnostic redox-active biomarkers. Yet, the selectivity of these translational sensors is far from being sufficient for discriminating between individual molecules in multicomponent samples, such as biofluids. Here, we propose an approach to improve the selectivity of nanostructured electrodes using a simple modification with a functional bio-polymer. Specifically, we demonstrate the targeted modification with a bio-polymer chitosan of carbon nanotubes organized in an array on a Au electrode. We describe the fabrication process and we show the characterization of the structural morphology and the electrochemical activity of the fabricated chitosan-modified carbon nanotube arrayed electrode. Electrochemical characterization yielded an increased effective surface area for the optimized carbon nanotube arrayed electrode (0.46 ± 0.03 cm2) that was similar to the area of the unmodified Au electrode (0.48 ± 0.02 cm2). Furthermore, despite decreased electrochemical current characteristics, we demonstrate the feasibility to modify individual carbon nanotubes with chitosan. The modification of the carbon nanostructures with chitosan will enable further functionalization with specific receptors, such as enzymes and antibodies that will provide the required selectivity towards biomarkers in multicomponent biofluids. 


Electrochemical sensors, chitosan, carbon nanotubes, modified electrodes.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM