Effect of hafnium addition on wear resistance of zinc-aluminum 5 alloy: A three-dimensional presentation  

Adnan I. O. Zaid1*, Ahmad O. Mostafa2

1Department of Industrial Engineering, University of Jordan, Amman, 11924, Jordan

2Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology,  Masdar City, Abu Dhabi, P. O. Box 54224, United Arab Emirates

Adv. Mater. Lett., 2017, 8 (9), pp 910-915

DOI: 10.5185/amlett.2017.1662

Publication Date (Web): Jun 04, 2017

E-mail: adnan_kilani@yahoo.com


ZAMAK 5 alloy is known to solidify in a large grain dendritic structure, which negatively affects its mechanical properties and surface quality. It is therefore of prime importance to reduce its grain size in order to overcome these drawbacks. In this paper, the effect of addition of hafnium (Hf) on the microstructural and mechanical characteristics of ZAMAK 5 alloy has been investigated. An amount of 0.10 wt.% Hf was introduced to the starting alloy using the well-established microalloying technique. The microstructural examination revealed that addition of Hf transformed the large grained dendrites into fine grains, which turned to increase its hardness number by 2.5% and slightly enhance its both yield and fracture stresses. The wear resistance was determined using a pin-on-disc test at different loads, speeds and time periods and the mass loss results of both alloys, before and after Hf addition, were compared with each other. The results indicated that ZAMAK 5 possesses better performance against wear at minimum speed, load and time (23.4m/min., 5N and 15min). Whereas, the Hf-containing alloy showed 42% improved performance against wear at severe experimental conditions of 153.5 m/min., 20N and 60min. The cumulative mass loss results were presented by three dimensional graphs in terms of speed, time and load, which indicated that the mass loss is a function of the three parameters. However, the graphs did not specify the most influential factor on the wear behaviour of both alloys. Full factorial design of experiments was used to identify the effect of parametric interaction on the cumulative mass loss of tested specimens and accordingly the speed was considered to be the main factor. The grain refined alloy is recommended to work under reduced speed and load conditions for prolonged service life. 


Grain refinement, hafnium addition, zinc-aluminum alloy 5, wear resistance, three-dimensional wear

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM