A high energy 3V lithium-ion capacitor synthesized via electrostatic spray deposition
1Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
2Advanced Materials Engineering Research Institute (AMERI), Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
3Center for the Study of Matter at Extreme Conditions (CeSMEC), Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
Adv. Mater. Lett., 2017, 8 (7), pp 783-790
DOI: 10.5185/amlett.2017.7098
Publication Date (Web): May 23, 2017
Copyright © IAAM-VBRI Press
E-mail: richaagrawal1017@gmail.com
Reduced graphene oxide-carbon nanotube (rGO-CNT) and anatase TiO2-Li4Ti5O12 (ATO-LTO) composite electrodes were synthesized via electrostatic spray deposition (ESD) and analyzed as cathode and anode vs. lithium, respectively. The rGO-CNT and ATO-LTO electrodes were able to deliver discharge capacities of ca. 63 mAhg-1 and 95 mAhg-1, respectively for a current rate of 0.1 Ag-1 with superior rate capability and cycle stability. Post electrode analyses, lithium-ion hybrid electrochemical capacitors (Li-HEC) were constructed comprising a prelithiated ATO-LTO anode and an activated rGO-CNT cathode in a carbonate based 1M LiPF6 salt electrolyte. The Li-HEC cells were stable for a cell potential of 0.05-3V and were able to deliver a maximum gravimetric energy density of 33.35 Whkg-1 and a maximum power density of 1207.4 Wkg-1, where the cell parameters were normalized with the total mass of the anode and cathode active materials. Furthermore the Li-HEC cells were able to retain ~77% of the initial capacity after 100 cycles. The superior Li-HEC performance is attributed to the utilization of a prelithiated lithium-intercalating anode and a double layer cathode in an asymmetric configuration. The feasibility of using a low-cost, facile process like ESD was therefore shown to produce high performance Li-HECs.
Anatase TiO2, graphene, carbon nanotubes, lithium-ion capacitors, electrostatic spray deposition.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India