New effective luminescent materials based on the Sm-doped borate glasses
1Division of Spectroscopy of Functional Materials, Institute of Physics, University of Zielona Góra, 4a Szafrana str., 65-516 Zielona Góra, Poland
2Department of Optical Materials, Vlokh Institute of Physical Optics, 23 Dragomanov str., 79-005 Lviv, Ukraine
3Department of Spectroscopy of Laser Materials, Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research Polish Academy of Sciences, 2 Okólna str, 50-422 Wrocław, Poland
Adv. Mater. Lett., 2017, 8 (6), pp 723-734
DOI: 10.5185/amlett.2017.1436
Publication Date (Web): Apr 30, 2017
Copyright © IAAM-VBRI Press
E-mail: B.Padlyak@if.uz.zgora.pl
The spectroscopic and radiative properties of the Sm-doped borate glasses with Li2B4O7, LiKB4O7, CaB4O7, and LiCaBO3 basic compositions as new luminescent materials have been investigated and analysed. The borate glasses of high chemical purity and optical quality, doped with Sm2O3 in amounts of 0.5 and 1.0 mol. % were obtained from corresponding polycrystalline compounds in the air atmosphere using standard glass synthesis technology. The spectroscopic properties of obtained Sm-doped glasses were studied using electron paramagnetic resonance (EPR), optical absorption, photoluminescence, and decay kinetics techniques. The Judd–Ofelt theory had been used for analysis of the optical absorption spectra and calculation of the phenomenological intensity parameters (Ω2, Ω4, Ω6). Radiative properties such as transition probabilities (Arad), branching ratios (βexp and βrad), stimulated emission cross-sections (σe), and radiative lifetimes (τrad) were estimated for 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, and 11/2) emission transitions of the Sm3+ ions in the Li2B4O7:Sm, CaB4O7:Sm, and LiCaBO3:Sm glasses containing 1.0 mol. % Sm2O3. The luminescence kinetics of Sm3+ centres in the investigated glasses are characterised by a single exponent decay with typical lifetimes, which depend on the basic glass composition and Sm impurity concentration. Experimental lifetimes (τexp) have been compared with those calculated (τrad) and quantum efficiencies (η) of the Sm3+ emission transitions were estimated. The calculated high quantum efficiencies (~ 80 %) and measured high quantum yields of luminescence (~ 14 – 21 %) clearly show that the investigated glasses belong to very promising materials for luminescent and laser applications.
Borate glasses, Sm3+ ions, optical absorption, luminescence spectra, Judd&ndash,Ofelt analysis, luminescence kinetics, radiative properties.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India