1Institute of Nano Science and Technology, Habitat Center, S.A.S Nagar Mohali 160062, India
2Department of Physics, Panjab University, Chandigarh 160014, India
Adv. Mater. Lett., 2017, 8 (5), pp 645-649
DOI: 10.5185/amlett.2017.6378
Publication Date (Web): Apr 04, 2017
Copyright © IAAM-VBRI Press
E-mail: gagan.puchd@gmail.com
A theoretical model for the specific heat of nanofluids containing oxide-based nanoparticles of different sizes and at different temperatures has been presented. The model proposed by Xuan and Roetzel has been modified by incorporating the effect of semi-solid interfacial layer, which is formed due to adsorption of base fluid molecules on the surface of nanoparticles. The contribution of this layer has been taken into account by assuming that the heat capacity, as well as the density of interfacial layer, lies between the corresponding values for the nanoparticle and the fluid and as such these have been estimated by taking the arithmetic and the geometric means of the relevant quantities. It is observed that the specific heat capacity of the nanofluid decreases with increase in particle volume fraction and that the presence of interfacial layer enhances the value even though its thickness has been taken to be only 1-2 nm as estimated by Xue et al. using molecular dynamics simulation. The effects of interfacial layer thickness, nanoparticle size, volume fraction, and specific heat ratio of particle to fluid have been discussed. The obtained results are in good agreement with some recent available experimental data.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study