Interfacial layer effect on specific heat of colloidal suspensions

Gaganpreet Chadha1*, Sunita Srivastava2

1Institute of Nano Science and Technology, Habitat Center, S.A.S Nagar Mohali 160062, India

2Department of Physics, Panjab University, Chandigarh 160014, India

Adv. Mater. Lett., 2017, 8 (5), pp 645-649

DOI: 10.5185/amlett.2017.6378

Publication Date (Web): Apr 04, 2017

E-mail: gagan.puchd@gmail.com

Abstract


A theoretical model for the specific heat of nanofluids containing oxide-based nanoparticles of different sizes and at different temperatures has been presented. The model proposed by Xuan and Roetzel has been modified by incorporating the effect of semi-solid interfacial layer, which is formed due to adsorption of base fluid molecules on the surface of nanoparticles. The contribution of this layer has been taken into account by assuming that the heat capacity, as well as the density of interfacial layer, lies between the corresponding values for the nanoparticle and the fluid and as such these have been estimated by taking the arithmetic and the geometric means of the relevant quantities. It is observed that the specific heat capacity of the nanofluid decreases with increase in particle volume fraction and that the presence of interfacial layer enhances the value even though its thickness has been taken to be only 1-2 nm as estimated by Xue et al. using molecular dynamics simulation. The effects of interfacial layer thickness, nanoparticle size, volume fraction, and specific heat ratio of particle to fluid have been discussed. The obtained results are in good agreement with some recent available experimental data.

Keywords

Nanofluids, specific heat, interfacial layer.

Current Issue

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  


Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review


Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis


Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models


Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field


Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes


Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area


Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 


Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics


Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?


Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities


Advanced Oxidations of Tartrazine Azo-dye


Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients


Previous issues

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Upcoming Congress

Knowledge Experience at Sea TM