Cover Page May-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 5, Pages 587-591, May 2017
About Cover


Biomimetic electroconductive scaffolds for muscle regenerative engineering

Xiaoyan Tang1, 2, 3, 4, Yusuf Khan1, 2, 3, 4, 5, Cato T. Laurencin1, 2, 3, 4, 5, 6*

1Institute for Regenerative Engineering, Uconn Health, Farmington, CT 06030, USA

2Department of Orthopaedic Surgery, Uconn Health, Farmington, CT 06030, USA

3Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, Uconn Health, Farmington, CT 06030, USA

4Department of Material Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

5Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA

6Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA

Adv. Mater. Lett., 2017, 8 (5), pp 587-591

DOI: 10.5185/amlett.2017.7106

Publication Date (Web): Apr 04, 2017

E-mail: laurencin@uchc.edu

Abstract

Conducting polymers are emerging as highly attractive materials since they can be used alone or in combination with other biomaterials to provide electrical stimulus for tissue regeneration. Here, we report the fabrication of a novel stimuli-responsive conducting polymer scaffold, which can be used to regulate muscle cell adhesion, proliferation and differentiation. Our goal in this study was to develop electroconductive nanofiber polymer scaffolds that can modulate the cellular physical microenvironment to increase electrical communication between cells and ultimately generate a more robust and functional construct for muscle regeneration. Matrices such as those designed here could have a significant impact in the clinical setting, where muscle atrophy and fatty infiltration prevent healing of common injuries such as rotator cuff tears. The bio-interface consists of a conducting polymer, poly (3,4ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS), with a dopamine-polymerized biodegradable substrate made from poly (ε-carprolactone) (PCL) that is rationally assembled together based on the native structure of muscle fibers. XPS analysis confirmed that poly (dopamine) deposition on the PCL scaffolds was successful. The coating of PEDOT: PSS on the poly(dopamine) modified PCL scaffolds was stable as both representative peaks were shown. C2C12 cells, a myoblast cell line was cultured on conductive substrates with different concentrations. Biocompatibility and cellular proliferation of the conducting polymer scaffolds were assessed. It was found that conducting polymers scaffolds of all groups were biocompatible. PEDOT:PSS coating of a low and medium concentration(1% and 10%) showed stimulatory effect on C2C12 growth compared to the control groups. These results showed that the presence of PEDOT:PSS at optimum concentration might enhance C2C12 cell growth and proliferation. These conducting polymer scaffolds hold great promise as biomimetic platforms for skeletal muscle regeneration.

Keywords

Conducting polymers, muscle tissue regeneration, intrinsic conductivity, bioelectronics.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM