Cover Page March-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 3, Pages 295-302, March 2017
About Cover


Lanthanum doped–TiO2 decorated on graphene oxide nanocomposite: A photocatalyst for enhanced degradation of acid blue 40 under simulated solar light 

Samuel O.B. Oppong1*, William W. Anku1, Sudheesh K. Shukla1,2, Poomani P. Govender1*

1Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein campus,  Johannesburg, 2028, South Africa

2Vinoba Bhave Research Institute, Sirsa Road, Saidabad, Allahabad, 221508, India

Adv. Mater. Lett., 2017, 8 (3), pp 295-302

DOI: 10.5185/amlett.2017.6826

Publication Date (Web): Jan 28, 2017

E-mail: samkello2002@yahoo.com; pennyg@uj.ac.za

Abstract

La-TiO2-GO nanocomposites were successfully synthesised via sol-gel method. Structures, morphologies and photocatalytic activities of the as-synthesized nanocomposites were determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy (RS) and scanning electron microscopy (SEM). UV-Vis diffuse reflectance spectroscopy was used to estimate band gap energies. The photocatalytic activities of the as-synthesized nanocomposites were evaluated for the degradation of Acid Blue 40 in aqueous solutions under simulated solar light. The photocatalytic results show that the as-synthesized La-doped TiO2-GO (0.3% La) nanocomposite shows good photocatalytic activity and can be considered as a promising photocatalyst for the degradation of organic pollutants in water. The good photocatalytic efficiency is ascribed to the cooperative effect of improved visible light absorbance and separation of charge carriers due to the combined effect of La and the GO in the composite. Analysis from Total organic carbon (TOC) shows a high degree of complete mineralisation of Acid Blue 40 (TOC removal of 75%) which decreases the formation of possible degradation by-products. Due to the stability of La-TiO2-GO (0.3% La) nanocomposite, it was reused for five times reaching 84.0% maximum degradation efficiency during the five cycles.

Keywords

Lanthanide, nanocomposite, graphene oxide, photocatalyst, acid blue 40, dye removal.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM