Green approach: Nanocrystalline titania-based sulfonic acid catalyst for the synthesis of piperazinyl-quinolinyl pyran derivatives

Arul Murugesan, Robert M Gengan*, Anand Krishnan

Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa

*Corresponding author, Tel: (+27) 31 3732309; Fax: (+27) 866740441; E-mail: genganrm@dut.ac.za

Received: 23 August 2016, Revised: 29 September 2016 and Accepted: 22 November 2016

DOI: 10.5185/amlett.2017.7040
www.vbripress.com/aml

Abstract

A nanocrystalline titania-based sulfonic acid material was prepared, characterized and used as an effective, efficient and reusable catalyst for the synthesis of 2-amino-4-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-6-phenyl-4H-pyran-3-carbonitriles and 2-amino-4-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-6-(pyridin-4-yl)-4H-pyran-3-carbonitrile derivatives under solvent-free conditions. This simple three component one-pot synthesis results in high yield products in 2 hours via conventional heating protocols. The catalyst was characterized by XRD, TEM, SEM, BET and Raman spectroscopy. The catalyst was recycled 5 times and recorded a decrease of 10 % in catalytic activity making it cost effective for large scale production. Copyright © 2016 VBRI Press.

Keywords: Sulfonic-acid catalyst, solvent-free, MCR, kneevenagel condensation.

Introduction

Heterocyclic compounds such as pyrans and pyranopyrans are important scaffolds since they amplify the bioactivity of compounds. These compounds exhibit a wide spectrum of pharmacological activities such as insecticidal [1], anti-viral [2], anti-tumor [3], inhibition of influenza virus [4] and phytotoxic activities [5]. Hence there has been a renewed interest in developing a general, versatile and more efficient method for the synthesis of pyrans and pyranopyran derivatives. A number of synthetic approaches to this class of compounds are documented [6] including the synthesis of 2-amino-4-aryl-3-cyano-4H-pyrans by the cyclization of arylidine malononitrile and other active methylene compounds in the presence of organic bases such as piperidine [7], pyridine [8] and trimethylamine [9-10]. Most of these methods are unsuitable as they utilise volatile solvents and require long reaction time (~ 12 h) whilst catalyst recovery is also sometimes problematic. Recently, a one-pot synthesis using Mg/La mixed oxide and MgO [11-12] as a basic catalyst as well as a multi-component synthesis of 2-amino-4H-pyran derivatives in aqueous medium [13-14] were reported. Most recently a new Brønsted acid, i.e., 4-(succinimido)-1-butane sulfonic acid (SBSA) was used for the synthesis of dihydropyran [4, 3-b] pyran derivatives [15]. The recent years has witnessed gigantic advance in the catalysis of organic reactions by solid acid catalysts since they provide better opportunities for recovering and recycling from reaction mixtures. In particular, chemically bound adsorbed sulfonic acid on TiO₂ viz., TiO₂-Pr-SO₃H was synthesised, characterised then applied to the synthesis of quinoxalines [16], coumarins [17] and the promotion of the N-Boc protection of amines [18], however the scope of this catalyst is unlimited and needs further exploration. Green chemistry underlays twelve principles, and catalysis is one of the thumb principles which states using catalyst for a reaction instead of using a stoichiometric reagents which helps to increase selectivity, minimise waste and reduce reaction times and energy demands.

TiO₂, the most widely studied and used in many applications because of its strong oxidizing abilities and for the decomposition of organic pollutants and superhydrophilicity, chemical stability, long durability, nontoxicity, low cost, and transparency to visible light. The photocatalytic properties of TiO₂ are due to the formation of photogenerated charge carriers (hole and electron) which are formed upon the absorption of ultraviolet (UV) light corresponding to the band gap. The photogenerated holes in the valence band diffuses TiO₂ surface and react with adsorbed water molecules, forming hydroxyl radicals (•OH). The photogenerated holes and the hydroxyl radicals oxidize organic molecules on the TiO₂ surface in vicinity. In the meantime, electrons in the conduction band typically participate in reduction processes, which typically reacts with molecular oxygen in the air to produce superoxide radical anions (O₂•−). The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO₂ photocatalysis. In this work, recent developments in the area of TiO₂ photocatalysis research, in terms of new materials from a structural design perspective, have been
carried out. The dimensionality associated with the structure of a TiO2 material can affect its properties and functions, including its photocatalytic performance [19].

In the current studies we report the excellent catalytic effect of TiO2–Pr–SO3H for the multi-component synthesis of 2-amino-4-(2-(4-methylpiperezin-1-yl)quinolin-3-yl)-6-phenyl-4H-pyran-3-carbonitriles and 2-amino-4-(2-(4-methylpiperezin-1-yl)quinolin-3-yl)-6-(pyridin-4-yl)-4H-pyran-3-carbonitrile derivatives using solvent-free conditions. In this strategy we decided to theoretically enhance the biological activity of the target molecule by using a new piperazinyl formyl quinoline derivative as a precursor for the multi-component synthesis, which confirms our greener approach to the work carried out.

Experimental

General

Chemicals were purchased from Merck, Sigma Aldrich. The reaction monitoring and purity of the product was accomplished by TLC. FTIR spectra were recorded in the range of 4000-400 cm−1 on a JASCO FT/IR-460 spectrophotometer using KBr pellets. A Bruker D2 PHASER powder diffraction instrument; CuKα ray (wavelength λ = 0.154056 nm), was used to measure in a continuous step-scan mode: the minimum width of the stage 0.031°, equilibrium time of 256 seconds, the operating voltage to 30 kV with 10 mA. Field-emission scanning electron microscopy (FESEM, Jeol JSM 7600F) was employed to characterise the morphology. High Resolution-Transmission Electron Spectroscopy (HR-TEM) was used. The BET gas sorption isotherms were measured at 77 K for N2 and H2, and 273 and 298 K for CO2 using Micromeritics Autopore 9500 system. Before recording gas sorption measurements, the sample was initially dehydrated at 423 K for 24 h under vacuum. Raman Spectroscopy was measured using the detector CCD (Triax) and the laser (He-Ne laser 632.8 nm). The NMR spectra were recorded in a Bruker Advance 400 MHz instrument. A TOF-MS analyser for accurate (HRMS) was used. The melting point (m.p) was recorded on a Buchi B-545 apparatus using open capillary tubes.

Catalyst preparation

Synthesis of 3-mercaptopropyltitania (MPT)

The synthesis of MPT was achieved by following ref. 18. Briefly, 10 g of TiO2 and 15 mL of (3-mercaptopropyl) trimethoxysilane were added to 30 mL dry toluene and the reaction mixture was refluxed for 24 h. After this period, the mixture was filtered, washed with acetone and dried.

Oxidation of 3-mercaptopropyltitania

MPT was oxidized as follows: an aliquot of 10 mL of 30 % H2O2 and 30 mL methanol was added to MPT followed by two drops of conc. H2SO4. The reaction mixture was stirred for 24 h at room temperature, filtered and washed with distilled water and acetone to obtain solid acid catalyst TiO2-Pr-SO3H (Scheme 1).

General procedure for the synthesis of substituted 2-(4-methylpiperezin-1-yl) quinoline-3-carbaldehyde (3)

The starting compound 2-chloro-3-formyl quinoline (CFQ) (1) was prepared from acetylalmine, DMF and POCl3 by the Vilsmeier Haack reaction [19]. An aliquot (0.001 mol) of CFQ and potassium carbonate (0.002 mol) was added to a round bottom flask and an excess of 1-methylpiperezine was added. The mixture was refluxed for 24 h at 200 °C; the reaction was monitored by TLC. After completion of the reaction, the reaction mass was cooled to room temperature and poured into water. It was then filtered, washed with water and dried. The crude product was purified by column chromatography using silica gel and a mobile phase of acetone and hexane (70:30) to produce a yellow powder of 90 % yield (m.p 180 °C). IR (neat, cm−1): 2979, 2934, 2643, 2901, 2358, 2333, 1693, 1593, 1421, 1372, 1239, 952, 765, 512, 482 cm−1; 1H NMR (400 MHz, CDCl3); δ 2.3 (s, CH3, 3H), 2.6 (t, CH2, 4H; J=4.84 Hz), 3.47 (t, CH2, 4H; J=5.4Hz), 7.31(t, Ar, 1H, J=0.84Hz), 7.62 (t, Ar, 1H, J=1.44 Hz), 7.7 (d, Ar, 1H, J=7.36 Hz), 7.76 (d, Ar, 1H, J=8.48 Hz), 8.4 (brs, Ar, 1H); 13C NMR (100 MHz, CDCl3): 45.50, 50, 54, 122, 123, 124, 127, 129, 132, .142, 149, 158, 190. TOF MS: C45H35NO4: C, 70.76; H, 6.71; N, 16.46; Found: C, 70.58; H, 6.72; N, 16.43.

General procedure for the synthesis of 2-amino-4-(2-(4-methylpiperezin-1-yl) quinolin-3-yl)-6-phenyl-4H-pyran-3-carbonitrile derivatives (6a-l)

To a mixture containing acetophenone derivative (5a-l) (1.0 mmol), 2-(4-methylpiperezin-1-yl) quinoline-3-carbaldehyde (1.0 mmol) and malononitrile (1.0 mmol) was added TiO2–Pr-SO3H solid acid catalyst (0.07 g) and the resulting mixture was heated at 140 °C under solvent-free conditions. Upon completion of the reaction (monitored by TLC), 10 mL ethanal was added and the resulting mixture was filtered. The filter-cake was washed with warm ethanol (5 mL x 3) to effectively clean the catalyst. The filtrates were subsequently combined, the solvent evaporated in vacuo and the crude mixture was purified by column chromatography using silica gel and a mobile phase of acetone and hexane (70:30). The recovered catalyst was dried and re-used in the subsequent runs.

General procedure for the synthesis of 2-amino-4-(2-(4-methylpiperezin-1-yl) quinolin-3-yl)-6-(pyridin-4-yl)-4H-pyran-3-carbonitrile derivatives (6m-n)

To a mixture of acetylpyridine derivatives (5m-n) (1.0 mmol), 2-(4-methylpiperezin-1-yl) quinoline-3-carbaldehyde (1.0 mmol) and malononitrile (1.0 mmol) was added TiO2–Pr-SO3H solid acid catalyst (0.07 g) and the resulting mixture was heated at 140 °C under solvent-free conditions. Upon completion of the reaction (monitored by TLC), 10 mL ethanol was added and the resulting mixture was filtered. The filter-cake was washed with warm ethanol (5 mL x 3) to effectively clean the catalyst. The filtrates were subsequently combined, the
solvent evaporated in vacuo and the crude mixture was purified by column chromatography using silica gel and a mobile phase of acetone and hexane (70: 30). The recovered catalyst was dried and re-used in the subsequent runs.

Spectroscopic information:

2-amino-4-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-6-phenyl-4H-pyran-3-carbonitrile (6a)

Yellow colour solid; IR (neat, cm⁻¹): 3450, 3419, 2999, 2719, 2636, 2472, 2198, 2182, 2144, 1610, 1596, 1566, 1524, 1436, 1406, 1236, 1208, 980, 821, 767,617. ¹H NMR (400 MHz, DMSO-d₆): δ 2.38 (s, 6H, 2CH₂), 2.47 (t, 4H, CH₂), 2.75 (t, 4H, CH₂), 6.97 (brs, 2H, NH₂), 7.33 (dd, Ar,2H, J =7.96Hz), 7.35 (t, Ar,1H, J =6.76 Hz), 7.52 (dd, Ar,2H, J =8.08 Hz), 7.64 (t, Ar,1H, J =7.32 Hz), 7.72 (dd, 2H, CH, J = 8.08 Hz), 7.88 (dd, Ar,2H, J = 7.84 Hz), 8.4 (brs, Ar,1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 20.82, 40.04, 42.51, 45.60, 52.16, 91.70, 112.13, 113.67, 116.92, 124.17, 124.26, 125.38, 126.36, 128.06, 128.44, 128.70, 129.12, 129.45 130.47, 134.46, 139.02, 140.48, 146.06, 155.36, 155.63, 158.69, 161.73. Calced. For C₂₁H₂₃N₄O: C 74.12, H 6.22, N 16.01; Found C 74.13, H 6.24, N 16.04.

2-amino-4-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-6-(4-nitrophenyl)-4H-pyran-3-carbonitrile (6e)

Yellow colour solid; IR (neat, cm⁻¹): 34941, 3127, 2849, 2713, 2204, 2185, 2148, 1713, 1616, 1598, 1530, 1406, 1345, 1289, 1206, 1015, 849, 774, 698. ¹H NMR (400 MHz, DMSO-d₆): δ 2.07 (s, 3H, CH₃), 2.5 (t, 4H, CH₂), 2.85 (t, 4H, CH₂), 7.05 (brs, 2H, NH₂), 7.38 (dd, Ar,2H, J =8.28Hz), 7.64 (t, Ar,1H, J =0.64 Hz), 7.73 (d, 2H, CH, J = 8.28 Hz), 7.88 (dd, Ar,4H, J = 8.72 Hz), 8.37 (dd, Ar,2H, J = 8.8 Hz), 8.41 (brs, Ar,1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 30.64, 40.61, 42.47, 45.65, 52.18, 91.23, 112.02, 116.41, 123.65, 124.25, 124.32, 125.10, 126.41, 128.09, 130.13, 130.62, 140.63, 143.81, 146.10, 147.85, 153.39, 155.63, 158.97, 161.58. Anal. Calcd. For C₂₀H₂₁N₄O: C 66.65, H 5.16, N 17.94; Found: C 66.63, H 5.18, N 17.96.

2-amino-6-(4-fluorophenyl)-4-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-4H-pyran-3-carbonitrile (6f)

Yellow colour solid; IR (neat, cm⁻¹): 3529, 3390, 3057, 2996, 2715, 2628, 2481, 2204, 2187, 2155, 1616, 1528, 1438, 1238, 1161, 980, 835, 771, 570, 517. ¹H NMR (400 MHz, DMSO-d₆): δ 2.08 (s, 3H, CH₃), 2.5 (t, 4H, CH₂), 2.80 (t, 4H, CH₂), 6.99 (brs, 2H, NH₂), 7.38 (dd, Ar,4H, J =9.04Hz), 7.64 (t, Ar,2H, J =3.44 Hz), 7.73 (d, 2H, CH, J = 8.32 Hz), 7.84 (d, Ar,2H, J = 7.92 Hz), 8.4 (brs, Ar,1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 42.26, 42.83, 45.94, 52.36, 91.62, 112.18, 113.68, 115.41, 115.62,116.79, 122.58, 124.15, 124.24, 125.36, 126.38, 128.06, 130.45, 130.81, 130.89, 133.77, 140.43, 146.11, 154.25, 137.30, 155.80, 157.86, 161.72. ¹⁹F NMR (400 MHz, DMSO-d₆): δ =111.19. Calcd. For C₁₉H₁₇FNO: C 70.73, H 5.48, N 15.86; Found: C 70.70, H 5.49, N 15.88.

2-amino-6-(4-chlorophenyl)-4-(2-(4-methylpiperazin-1-yl)quinolin-3-yl)-4H-pyran-3-carbonitrile (6g)

Yellow colour solid; IR (neat, cm⁻¹): 3373, 3246, 2939, 2746, 2358, 2204, 2185, 2152, 1595, 1618, 1526, 1409, 1491, 1240, 1090, 831, 758, 621, 556, 483. ¹H NMR (400 MHz, DMSO-d₆): δ 2.83 (s, 3H, CH₃), 2.47 (t, 4H, CH₂), 2.75 (t, 4H, CH₂), 6.97 (brs, 2H, NH₂), 7.33 (dd, 2H, J = 7.96Hz), 7.35 (t, Ar,1H, J =6.76 Hz), 7.52 (d, Ar,2H,
2-amino-6-(4-bromophenyl)-4-(2-(4-methylpyrizarin-1-yl)quinolin-3-yl)-4H-pyran-3-carbonitrile (6h)

Yellow colour solid; IR (neat, cm⁻¹): 3376, 2927, 2952, 2224, 2186, 2148, 1729, 1629, 1560, 1449, 1588, 1382, 1276, 1123, 778, 571, 572, 525. ¹H NMR (400 MHz, DMSOδ6): δ 4.58, 8.21, 53.74, 69.73, 91.16, 111.89, 116.79, 122.45, 123.96, 124.13, 124.39, 125.11, 125.82, 126.45, 126.64, 128.03, 128.63, 128.89, 130.16, 130.29, 130.43, 130.62, 131.55, 131.64, 134.09, 136.30, 137.96, 146.32, 153.43, 157.14, 157.47, 158.66, 162.04. Calcd. For C₂₅H₂₃ClN₂O: C 68.19, H 5.28, N 15.29; Found C 68.21, H 5.30, N 15.27.

2-amino-6-(4-methylpyrizarin-1-yl)quinolin-3-yl)-4H-pyran-3-carbonitrile (6i)

Yellow colour solid; IR (neat, cm⁻¹): 3460, 3424, 3105, 3063, 2982, 2710, 2637, 2479, 2207, 2185, 2143, 1613, 1596, 1527, 1397, 1245, 1215, 772, 718, 618. ¹H NMR (400 MHz, DMSOδ6): δ 2.9 (s, 3H, CH₃), 2.7 (t, 4H, CH₂), 3.1 (t, 4H, CH₂), 7.16 (brs, 2H, NH₂), 7.26 (t, Ar,1H, J =3.96Hz), 7.4 (t, Ar,1H, J =7.2Hz), 7.68 (t, Ar,1H, J = 6.96 Hz), 7.74 (d, 2H, CH, J = 9.68 Hz). ¹³C NMR (100 MHz, DMSOδ6): δ 42.47, 45.65, 52.18, 91.23, 112.02, 116.45, 123.65, 124.32, 125.10, 126.41, 128.09,130.13, 130.62, 140.63, 143.81, 146.10, 147.85, 153.39, 158.97, 161.58. Calcd. For C₂₅H₂₃N₂O: C 77.99, H 5.58, N 13.37; Found: C 77.96, H 5.50, N 13.38.
Molecular docking studies

Auto Dock 4.2 program which operate the Lamarckian Genetic Algorithm (LGA) was used to dock compound 6a&6n with the 3D structure of Hsp90. The crystal structure of Hsp90. (PDB id: 1AO6) was obtained from the Protein Data Bank and all water molecules were eliminated with successive addition of hydrogen atoms, followed by the computation of Gasteiger charges as required for LGA molecular docking procedure. The grid size along the x-, y-, z-axes and grid space were set to 60 Å, 60 Å and 60 Å and 0.403 Å for Hsp90. To include the whole subdomain IIA of Hsp90 during the docking process, the grid centre along the x-, y-, z-axes was set as 34.016 Å, 42.121 Å, and 50.644 Å for Hsp90. The Docking parameters were used, Genetic Algorithm (GA) population=150; maximum number of energy evaluations=250,000 and GA crossover mode of two points. For each docking simulation, 20 different conformers were generated and PyMOL package software was used for visualization of the interaction of docked protein–ligand complex. The conformation with the lowest binding free energy was used for further analysis.

![Scheme 1](image)

Scheme 1. The reaction scheme for the synthesis of TiO$_2$-Pr-SO$_3$H.

Results and discussion

In the present study, we report a one-pot multicomponent synthesis of highly functionalised piperazinyl-quinolinyl pyran derivatives under solvent free conditions using nanocrystalline titania-based sulfonic acid catalyst. We selected the catalyst based on its new entry into the catalytic field and its efficacy based on minimal studies undertaken [16-17]. Briefly, the catalyst was synthesised in 2 stages: a mixture of TiO$_2$ and (3-mercaptopropyl) trimethoxysilane were refluxed for 24 h and after the work-up of the reaction, the product was oxidised with H$_2$O$_2$ in an acidic medium (Scheme 1). The catalyst was characterised completely by several techniques.

The FT-IR spectra for pure TiO$_2$ and TiO$_2$-Pr-SO$_3$H revealed the following information: in the case of TiO$_2$, the absorption at 958, 1414, 2351 and 1645 cm$^{-1}$ corresponds to the -OH stretching and bending vibrations of the adsorbed water. The spectrum of TiO$_2$-Pr-SO$_3$H is similar to TiO$_2$ however the absorption at 3243 cm$^{-1}$ is flattened which can be attributed to the modification of TiO$_2$. Also, the CH stretching vibrations of silylating agent was observed at 2954 cm$^{-1}$ and the absorption at 1211 cm$^{-1}$ is due to the Si-O stretching vibration. Furthermore, the absorptions at 1163 and 1141 cm$^{-1}$ is due to the stretching mode of S=O in SO$_3$H.

The XRD patterns of TiO$_2$ and TiO$_2$-Pr-SO$_3$H (Fig. 1) clearly shows the anatase lines. It seems that the peak intensities of TiO$_2$-Pr-SO$_3$H are almost the same as those of TiO$_2$ thereby suggesting that the sulphate modification does not change the phase of TiO$_2$.

![Fig. 1](image)

Fig. 1. Comparison of PXRD pattern of TiO$_2$ and TiO$_2$-Pr-SO$_3$H.

The representative SEM images of TiO$_2$ (see Fig. S1 in supporting information) exhibit an aggregation of cloud-like structures of small spherical-shaped particles. The SEM micrographs of TiO$_2$-Pr-SO$_3$H show some modifications with respect to TiO$_2$ such that the primary surface structure of TiO$_2$ has changed, however the cloud-like structure and small spherical-shaped particles still exists.

![Fig. 2](image)

Fig. 2. The EDS pattern for TiO$_2$ (image 1), and TiO$_2$-Pr-SO$_3$H (image 2).

The EDS analysis for TiO$_2$ and TiO$_2$-Pr-SO$_3$H (Fig. 2) confirms the presence of all the elements and the actual weight % is presented in TiO$_2$ element Ti, O, C, S,
weight % 35.95, 36.20, 17.24, 0, Atomic (%) 16.67, 50.25, 31.88, 0. The catalyst TiO$_2$-Pr-SO$_3$H element Ti, O, C, S, weight % 40.09, 43.22, 8.71, 0.30, Atomic (%) 19.21, 62, 16.64, 0.22, respectively.

Field-emission scanning electron microscopy was employed to characterise the morphology. The TEM image (see Fig. S2 in supporting information) snapped at different place (a-1000 nm, b-200 nm, c-500 nm, d-100 nm, e-200 nm, and f-200 nm) shows the crystalline size of TiO$_2$-Pr-SO$_3$H which also has a mesoporous structure thereby suggesting a good surface for catalytic activity. The porous properties of TiO$_2$ and TiO$_2$-Pr-SO$_3$H, analysed by N$_2$ gas sorption measurements at 273K (see Fig. S3 in supporting information) showed TiO$_2$ as a type-I adsorption isotherm which is characteristic of microporous material and the BET and Langmuir surface area of TiO$_2$ were calculated as 7 and 11 m2/g, respectively.

The N$_2$ adsorption isotherm of TiO$_2$-Pr-SO$_3$H also indicated a type-I adsorption isotherm however the BET and Langmuir surface area were calculated as 16 and 37 m2/g, respectively.

Further investigation of the structure of TiO$_2$ and TiO$_2$-Pr-SO$_3$H were investigated by Raman spectroscopy (see Fig. S4 in supporting information) which showed absorption signals at 450, 470, 500, 570, 600, 2000, 3000, and 3650 cm$^{-1}$ for TiO$_2$. The absorption signal of TiO$_2$-Pr-SO$_3$H showed absorptions signals at 470, 500, 650, 800, 900, 2000, 3000, 3650 cm$^{-1}$ with an additional signal at 3450 cm$^{-1}$ indicating the acidic functional group. In order to synthesise some new biologically potent piperazinyl-quinolinyl pyran derivatives, a new starting compound viz., 2-(4-methylpiperazin-1-yl) quinoline-3-carboxaldehyde (3) was synthesised after using the Vilsmeir-Haack reaction to prepare 2- chloroquinoline-3-carboxaldehyde (1) from acetonilide [20]. Thereafter a mixture of 1 and 1-methylpiperazine (2) was refluxed in a basic medium to obtain 3 after 24 hours (compound 3). This compound was fully characterised by IR, 1H-NMR, 13C-NMR, TOF-MS and elemental analysis (Fig. S5-6 in Supporting information).

In a preliminary study to synthesise 6a (Scheme 2) we compared a solvent-free system against ethanol and observed better yield in the latter case as reported in ref. 17. Hence to determine the optimum quantity of TiO$_2$-Pr-SO$_3$H, the condensation of 3, malononitrile (4) and actophenone (5a), (Scheme 2) was carried out in the presence of different amount of catalyst (0.02, 0.05, 0.07 g) under solvent free conditions: 6a was produced and subsequently characterised by IR, 1H-NMR, 13C-NMR, TOF-MS and elemental analysis. It was found that increasing the quantity of the catalyst beyond 0.05 g did not increase the yield noticeably hence we selected this quantity as optimum for all subsequent reactions.

Table 1. A comparison of the reaction of a solvent/solvent-free system using TiO$_2$-Pr-SO$_3$H for the synthesis of 6a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>EtOH</td>
<td>Reflux</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>MeOH</td>
<td>Reflux</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>CH$_3$CN</td>
<td>Reflux</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>EtOH</td>
<td>Reflux</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>MeOH</td>
<td>Reflux</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>TiO$_2$- Pr-SO$_3$H</td>
<td>Neat</td>
<td>140</td>
<td>2</td>
<td>90</td>
</tr>
</tbody>
</table>

Whilst optimising the reaction conditions (Table 1), monitored by TLC, we observed that the use of a solvent needed a longer reaction time whilst the yield of 6a was lower. Hence we observed that if we conducted the solvent-free reaction at a higher temperature, viz., 140 °C some additional spots were observed on the TLC plate thereby suggesting formation of by-products. Also a shorter reaction time showed the presence of starting materials thereby indicating an incomplete reaction. The maximum yield of 6a (90%) was obtained under a solvent free condition after heating for 2 hours.

![Fig. 3](image3.png)
Fig. 3. The yield (%) of product (6a) versus the number of times the catalyst was re-used.

The re-usability potential of the catalyst TiO$_2$-Pr-SO$_3$H was also investigated in the model reaction to synthesise...
6a: briefly, the solid was rinsed with acetonitrile and methanol and heated at 100 °C and taken for subsequent reactions. We found that the catalyst could be re-used five times without any significant loss of catalytic activity (Fig. 3) and concluded that it was sufficient and an important benefit which makes it useful if commercial application is required. The synthesis (Scheme 3 and 4) of the functionalised pipеразинyl-quinolinyl pyran derivatives 6a-6n using monocrylline titania-based sulfonic acid catalyst were undertaken in a solvent-free system for a reaction time of 2 hours at 140 °C.

Table 2. The synthesis of 2-amino-4-(2-(4-methylpipеразин-1-yl) quinoline 3-yl)-6-phenyl-4H-pyran-3-carbonitriles and 2-amino-4-(2-(4-methylpipеразин-1-yl) quinolin-3-yl)-6-(pyridin-4-yl)-4H-pyran-3-carbonitrile in the presence of TiO2-Pr-SO3H.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate (5a-n)</th>
<th>Product (6a-n)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>M.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C6H5COCH3</td>
<td>6a</td>
<td>2</td>
<td>90</td>
<td>260-262</td>
</tr>
<tr>
<td>2</td>
<td>HOCH2COCH3</td>
<td>6b</td>
<td>2</td>
<td>85</td>
<td>280-283</td>
</tr>
<tr>
<td>3</td>
<td>HOCH2COCH3</td>
<td>6c</td>
<td>2</td>
<td>90</td>
<td>285-287</td>
</tr>
<tr>
<td>4</td>
<td>CH3CH2COCH3</td>
<td>6d</td>
<td>3</td>
<td>78</td>
<td>278-280</td>
</tr>
<tr>
<td>5</td>
<td>O2NC2H5COCH3</td>
<td>6e</td>
<td>2</td>
<td>75</td>
<td>275-278</td>
</tr>
<tr>
<td>6</td>
<td>CH3H2COCH3</td>
<td>6f</td>
<td>2</td>
<td>70</td>
<td>277-279</td>
</tr>
<tr>
<td>7</td>
<td>C2H5COCH3</td>
<td>6g</td>
<td>2</td>
<td>90</td>
<td>297-300</td>
</tr>
<tr>
<td>8</td>
<td>BrCH2COCH3</td>
<td>6h</td>
<td>2</td>
<td>87</td>
<td>290-292</td>
</tr>
<tr>
<td>9</td>
<td>C2H5OS</td>
<td>6i</td>
<td>3</td>
<td>83</td>
<td>280-283</td>
</tr>
<tr>
<td>10</td>
<td>C6H12COCH3</td>
<td>6j</td>
<td>2</td>
<td>90</td>
<td>288-290</td>
</tr>
<tr>
<td>11</td>
<td>HOCH2COCH3</td>
<td>6k</td>
<td>2</td>
<td>90</td>
<td>285-287</td>
</tr>
<tr>
<td>12</td>
<td>C6H12O</td>
<td>6l</td>
<td>2</td>
<td>75</td>
<td>267-269</td>
</tr>
<tr>
<td>13</td>
<td>C6H12NO</td>
<td>6m</td>
<td>2</td>
<td>88</td>
<td>270-272</td>
</tr>
<tr>
<td>14</td>
<td>C6H12NO</td>
<td>6n</td>
<td>2</td>
<td>90</td>
<td>285-287</td>
</tr>
</tbody>
</table>

The yield of the products (Table 2) ranged from 70 to 90 %. Compounds 6a-6n were characterised by IR, 1H NMR, 13C NMR, MS-TOF whilst 6e, 6k and 6n included 90° DEPT and 135 °DEPT.

Thus the one pot multi-component synthesis of the new pipеразинyl-quinolinyl pyran derivatives using the less studied TiO2-Pr-SO3H is a neat and efficient reaction which is selective for the formation of the sought after target. None of the above reaction has been documented hence a proposed mechanism is presented to support the formation of 6a which was the model reaction for the new reaction scheme. In the first step, the acidic catalyst activates the aldehyde carbonyl functionality thereby enabling malononitrile to form a new covalent bond with loss of water as in the Knoevenagel condensation to produce 2-(2-(4-methylpipеразин-1-yl) quinolin-3-yl) methylene as an intermediate I. In the next step, the catalyst activates the nitrogen of intermediate I thereby facilitating a Michael addition to give intermediate II. This is followed by a simple intramolecular condensation reaction to produce intermediate III which subsequently undergoes a proton transfer reaction to produce 6a.

Computational docking results

In order to support the experimental results, we performed computational docking analysis to create a model for Hsp90 (heat shock protein 90) –compound 6a & 6n complex. It has been stated earlier each domain of the SA proteins contains two sub domains (IA and B, IIA and B, IIIA and B) that possess common structural motifs. Sudlow site I and Sudlow site II (subdomains IIA and IIIA respectively) are the most probable binding sites of the ligands. Molecular docking analysis is performed using Auto dock 4.2 program and the energetically most feasible Hsp90-compound 6a & 6n complex is displayed in Fig. 4 (a-b).

Docking results clearly point out that compound 6a & 6n bind inside the binding pocket located in subdomain II A of Hsp90. It can be seen from Fig. 4 (a-b), compound 6a & 6n is located adjacent to the amino acid residues LEU-42, AGP-40, SER-36, LEU-89, ASN-91, ARG-32, LYS-98, ALA-213, PHE-120, SER-99, LYS-44, GLN-119, GLY-116, GLY-121 and THR101 of subdomain IIA of Hsp90. Furthermore, carbonyl group containing O atom of compound 5m forms a hydrogen bond LYS-98 with bond length 1.9 Å. It is imperative to note from the computational observations that compound 6a & 6n is in the locality of TRP-214 amino acid residue of Hsp90. These obtained values just provide the probable geometry of the complexes; however the binding has been established experimentally. The ability of Hsp90 to clamp onto proteins allows to perform several functions including assisting folding, Hsp90 inhibited are investigated as anti-cancer drugs, preventing aggregation, and facilitating transport.

Conclusion

Thus the titanium based solid acid catalyst was used for the synthesis of highly functionalised pipеразинyl-
quinolinyl pyran derivatives either with a solvent or under solvent- free conditions in a relatively short reaction time but the catalytic activity is most effective in a solvent-free system. The preparation of the catalyst is simple, safe and highly re-usable. Furthermore this new one pot reaction creates a new type of piperazinyl-quinolinyl pyran derivatives which have suitable functionality for a host of possible biochemical applications.

Acknowledgements

The authors gratefully acknowledge the financial support of the National Research Foundation (NRF) and Durban University of Technology (DUT).

References

(c) Sagar, R.; Park, J.; Koh, M.; Park, S.B; J. Org. Chem., 2009, 74, 2171. DOI: 10.1021/jo8023889

6. (a) Rahmati, A. Tetrahevron Lett., 2010, 51, 2967-2970. DOI: 10.1016/j.tetlet.2010.03.109

(b) Rahmati, A.; Alizadeh- Kouzehrash M. Chin J Chem. 2011, 29, 2373. DOI: 10.1007/s12034-011-0405

Supporting Information

Fig. S1. The SEM image of TiO$_2$ (a, b and c) and TiO$_2$-Pr-SO$_3$H (d, e and f).

Fig. S2. The TEM image of TiO$_2$-Pr-SO$_3$H at different place (a, b, c, d, e, f).

Fig. S3. Adsorption and desorption isotherms of TiO$_2$ and TiO$_2$-Pr-SO$_3$H at 273K.

Fig. S4. Raman shift of TiO$_2$ and TiO$_2$-Pr-SO$_3$H.

Fig. S5. The 1H NMR of compound 3.

Fig. S6. The 13C NMR of compound 3.
Fig. S7. The 1H NMR of compound 6a.

Fig. S8. The 13C NMR of compound 6a.

Fig. S9. The 1H NMR of compound 6n.

Fig. S10. The 13C NMR of compound 6n.