Alignment of Rods and Flakes using Electric Field 

Rongshan Qin*1

1School of Engineering and Innovation, The Open University, Walton Hall, Milton Keynes WA76AA, UK

DOI: 10.5185/amlett.2019.0020

Publication Date (Web): May 20, 2019

Corresponding author: Tel: (+44) 1908 652 999; E-mail: rongshan.qin@open.ac.uk

Graphical Abstract

Electrically neutral anisotropic objects can be aligned by the applied electric field. The required processing conditions include to submerge the objects in a matrix with higher electrical conductivity than that of the objects and to apply electric field to the suspension. The objects may be in rod, disk, flakes or other anisotropic shapes. Carbon nanotubes, silicon nanowires, micro coils, DNA and many bacteria can be approximated as rod-like shape, and graphene can be considered as a shape of flake. A fundamental investigation to this phenomenon has been carried out in the present work. Numerical calculation based on thermodynamics shows a confirmative trend to use electric field to align those materials. The driving force in the alignment processing is an equivalent configuration force dependent on the discrepancy between the electrical properties of the anisotropic particles and matrix. Copyright © VBRI Press.

Abstract

Electrically neutral anisotropic objects can be aligned by the applied electric field. The required processing conditions include to submerge the objects in a matrix with higher electrical conductivity than that of the objects and to apply electric field to the suspension. The objects may be in rod, disk, flakes or other anisotropic shapes. Carbon nanotubes, silicon nanowires, micro coils, DNA and many bacteria can be approximated as rod-like shape, and graphene can be considered as a shape of flake. A fundamental investigation to this phenomenon has been carried out in the present work. Numerical calculation based on thermodynamics shows a confirmative trend to use electric field to align those materials. The driving force in the alignment processing is an equivalent configuration force dependent on the discrepancy between the electrical properties of the anisotropic particles and matrix. © VBRI Press.

Keywords

Anisotropic particles, alignment, electropulse

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM