Synthesis, Structural Characterization, Dielectric and Piezoelectric Properties of Multiferroic Double-perovskite Bi2FeMnO6 Ceramics

Peng Song, Zhipeng Pei, Heng Wu, Yao Lu, Weiren Xia, Xinhua Zhu

National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China

DOI: 10.5185/amlett.2019.0008

Publication Date (Web): May 18, 2019

Corresponding author: E-mail: xhzhu@nju.edu.cn

Graphical Abstract

Double-perovskite structured multiferroic Bi2FeMnO6 (BFMO) ceramics synthesized via solid-state reaction route at 880oC for 3 h, crystallized in a distorted rhombohedral structure with R3c space group. Their lattice parameters in the hexagonal system were determined to be a = 5.571 Å and c = 13.191 Å. SEM images show that the BFMO ceramic grains exhibit spherical morphology with an average size of 6.70 mm. Their atomic ratio of Bi:Fe:Mn was determined to be 2.07:1.02:1.00, close to the nominal value of 2:1:1. Raman spectra have verified the vibrational frequencies in the BFMO ceramics, and only 11 Raman active modes are observed. The less observed Raman modes in the BFMO ceramics compared with the theoretical group analyses, can be ascribed to the small correlation field splitting of the ceramic samples due to their polycrystalline nature. BFMO ceramics exhibit almost frequency-independent dielectric behavior in a frequency range of 500 - 106 Hz at room temperature. Their dielectric constant and dielectric loss were measured to be 700 and 0.03 at 106 Hz, respectively. The piezoelectric moduli d33 of the poled BFMO ceramics was measured to be 56 pC/N, which is two times larger than that reported for BiFeO3 thin film (d33 ≅ 25 pC/N). Copyright © VBRI Press.

Abstract

Double-perovskite structured multiferroic Bi2FeMnO6 (BFMO) ceramics synthesized via solid-state reaction route at 880oC for 3 h, crystallized in a distorted rhombohedral structure with R3c space group. Their lattice parameters in the hexagonal system were determined to be a = 5.571 Å and c = 13.191 Å. SEM images show that the BFMO ceramic grains exhibit spherical morphology with an average size of 6.70 mm. Their atomic ratio of Bi:Fe:Mn was determined to be 2.07:1.02:1.00, close to the nominal value of 2:1:1. Raman spectra have verified the vibrational frequencies in the BFMO ceramics, and only 11 Raman active modes are observed. The less observed Raman modes in the BFMO ceramics compared with the theoretical group analyses, can be ascribed to the small correlation field splitting of the ceramic samples due to their polycrystalline nature. BFMO ceramics exhibit almost frequency-independent dielectric behavior in a frequency range of 500 - 106 Hz at room temperature. Their dielectric constant and dielectric loss were measured to be 700 and 0.03 at 106 Hz, respectively. The piezoelectric moduli d33 of the poled BFMO ceramics was measured to be 56 pC/N, which is two times larger than that reported for BiFeO3 thin film (d33 ≅ 25 pC/N). © VBRI Press.

Keywords

Double perovskite oxides, Bi2FeMnO6 multiferroic ceramics, Raman spectra, dielectric and piezoelectric properties, microstructural characterization

Current Issue

Current Global Scenario of Electric Vehicles


Review on Detection of Phenol in Water 


Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review


Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight


Plasma Activated Water as a Source of Nitrogen for Algae Growth


Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application


Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System


Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources


Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method


Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance


Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye


Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 


Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect


Previous issues

Wearable Healthcare Devices

Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review

Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element

Plasma Activated Water Generation and its Application in Agriculture

Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 

Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels

Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes

Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties

Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies

Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles

Upcoming Congress

Knowledge Experience at Sea TM