Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 410-416, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Innovative silicon compatible materials for light emitting devices  

Adriana Scarangella1, Riccardo Reitano2, Francesco Priolo1,2,3, Maria Miritello1*

1CNR IMM, Via S. Sofia 64, 95123 Catania, Italy

2Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy

3Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania, Italy

Adv. Mater. Lett., 2019, 10 (6), pp 410-416

DOI: 10.5185/amlett.2019.2276

Publication Date (Web): Jan 14, 2019

E-mail: maria.miritello@ct.infn.it

Abstract

The paper reports the potentialities of innovative silicon compatible materials for light emitting devices. In particular thin films of Er doped yttrium oxide have been synthesized by a technique totally compatible with ULSI processes. Through the structural characterization, we will verify the high stability of the film and the good dopant dissolution. Moreover, by the investigation of the optical properties, we will demonstrate that the use of this compound is effective to introduce more than 1021 Er/cm3 in optically active state, value that cannot be reached in other Si compatible materials. The influence of Er content on the optical properties will be described in details. Moreover, we will propose the introduction of a proper sensitizer for Er, bismuth, in the same thin film. In particular, we will show that the (Er+Bi) co-doped yttrium oxide is a perfect host to overcome another important drawback of Er doped materials that is its low absorption cross section. The influence of Bi and Er contents on optical properties will be extensively discussed along the paper. Through the optimization of ratio between Bi and Er concentrations, high energy transfer efficiency will be reached with simultaneously a consistent increase of the effective Er cross section. A factor of more than three orders of magnitude have been obtained with respect to the direct excitation of Er.

Keywords

Light emitting devices, Erbium, yttrium oxide.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM