Cover Page November-2018-Advanced Materials Letters

ISSN- 0976-3961

Advanced Materials Letters

Volume 9, Issue 11, Pages 789-795, November 2018
About Cover

Cover page describe the Typical fracture surface of nuclear graphite blocks after irradiation (cracks occur during reactor operation). This picture Summarize the Fractographic studies of GR-280 nuclear graphite after irradiation up to neutron fluence above the turnaround dose (with a decrease in of the mechanical properties to the values close to the initial one after primary radiation-induced increase) showed along with the presence of transcrystalline fracture, appearance of intercrystalline fracture regions along the “filler-binder” type boundaries.

Structural performance of severely damaged reinforced concrete beams after SRP repair

Hayder H. Alghazali1, Zuhair K. Al-Jaberi1, Zena R. Aljazaeri2, John J. Myers3*

1Civil, Arch. and Envir. Engr, Missouri University of Science and Technology, Rolla, MO 65409, USA

2Nahrain University, Bagdad, Iraq

3Civil, Arch. and Envir., Missouri University of Science and Technology, Rolla, MO 65409, USA

Adv. Mater. Lett., 2018, 9 (11), pp 789-795

DOI: 10.5185/amlett.2018.2153

Publication Date (Web): Jul 25, 2018



To experimentally examine the ability of the steel reinforced polymer (SRP) in restoring the moment capacity compromised by damage in the main steel reinforcement, six full-scale reinforced concrete (RC) beams were designed to simulate impact damage from over height vehicle collision. The simulation was represented by concrete beams reinforced with discontinuous reinforcement (splice in maximum moment region) and tested until failure due to splice. The damaged concrete was repaired, and the SRP system (longitudinal soffit laminates and transverse U-wraps) was applied to restore the original moment capacity. All beams were 10 ft (3.0 m) in length, 18 in. (457 mm) in depth, and 12 in. (305 mm) in width. Different repairing configurations were investigated. The studied variables were the provided laminate area and the amount and distribution of U-wraps. The ultimate load capacity, deflection, and mode of failure were recorded during testing. The test results were compared to beam results with continuous reinforcement. It was concluded that the repairing beams with the SRP system can restore the damaged beams to a capacity similar to that of a non-damaged reinforced concrete (RC) beam with continuous reinforcement.


Severely damaged beam, SRP system, splice, flexural capacity, over-height vehicle impact