Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 431-439, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Akansha Dixit1, Nand Kumar1, Dibyendu S. Bag1*, Kavita  Agarwal1, Dhirendra K. Sharma2, N. Eswara Prasad1

1Defence Materials and Stores Research and Development Establishment, DMSRDE, P.O., G.T. Road, Kanpur 208013, India

2Department of Chemistry, Bundelkhand University, Jhansi-284128, India

Adv. Mater. Lett., 2019, 10 (6), pp 431-439

DOI: 10.5185/amlett.2019.2258

Publication Date (Web): Jan 14, 2019

E-mail: ds_bag@rediffmail.com

Abstract

Silver nanoparticles (AgNPs) embedded double network (DN) nanocomposite hydrogels [of P(AM-co-HEMA) as second network and PVA-Borax as first network] were synthesized by in-situ reduction of silver nitrate using citric acid in presence of the fully swollen high strength DN hydrogels. The AgNPs embedded DN nanocomposites hydrogels (Ag-DNG) were characterized by FTIR, XRD and TEM analyses. Such Ag-DNG hydrogels were studied for their degree of swelling and swelling kinetics. They were also evaluated for their anti-bacterial characteristics using a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria. The XRD analysis revealed the presence of AgNPs in the DN nanocomposite hydrogels. The AgNPs were observed to be 20-50 nm in diameter as observed by TEM analysis. The degree of swelling of Ag-DNG hydrogels was lower than that of the virgin DN hydrogel which was because of the space of pores of the DN hydrogels occupied by AgNPs. The virgin DN hydrogels did not exhibit any antimicrobial property, whereas Ag-DNG hydrogels exhibited a significant amount of antibacterial activity towards gram positive and gram negative bacteria. Such AgNPs incorporated high strength DN nanocomposite hydrogels may find potential biomedical application.

Keywords

Nanocomposite hydrogels, double network (DN) hydrogels, silver nanoparticles, antibacterial properties.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM