Cover Page June-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 6, Pages 395-399, June 2019
About Cover

The cover photo describes the graphical representation of a programmable microfluidic device for the capture and detection of a variety of cells and bacteria. Recently, the interest in microfluidic technology has progressed considerably since the last decade due to its advanced applications in many areas including protein biochemistry, cell culture, detection, and electromechanical systems.


Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Giorgos Papadimitropoulos1*, Maria Vasilopoulou1, Nikos Vourdas1, Dimitris N. Kouvatsos1, Kostas Giannakopoulos1, Stella Kennou2, Dimitris Davazoglou1

1Institute of Nanoscience and Nanotechnology, NCSR Demokritos POB 60228, Agia Paraskevi, Attiki, 153 10, Greece

2Department of Chemical Engineering, University of Patras, Patra, 26500, Greece

Adv. Mater. Lett., 2019, 10 (6), pp 395-399

DOI: 10.5185/amlett.2019.2283

Publication Date (Web): Jan 14, 2019

E-mail: g.papadimitropoulos@inn.demokritos.gr

Abstract

Tantalum pentoxide films were deposited on Si substrates at room temperature, by heating metallic filaments at temperatures below 600 oC, at a pressure of 1 Torr in O2 environment. This deposition method can be applied for all metallic oxides having higher vapor pressure than the corresponding metal. These (hwTa2O5) films were composed by amorphous material (as revealed by XRD measurements) and were found to be highly transparent within the range 350-1000 nm. Spectroscopic ellipsometry measurements have shown that the real part of the refractive index (n) of hwTa2O5 films depends on the deposition time and has a value below 1.5. As shown by scanning electron microscopy (TEM) measurements, these grains were composed by others with dimensions near 5 nm and with voids between them. The above microscopy measurements explain the high porosity of hwTa2O5 films. Moreover, hwTa2O5 films were also characterized by XPS and UPS measurements and the stoichiometric composition of the deposited films was determined.

Keywords

Thin film, hot-wire deposition, tantalum pentoxide, room temperature growth.

Current Issue

Smart Healthcare pulls up Clouds for Virtual Medicine


Selecting the correct electromagnetic inspection technology 


Influence of railway-track grinding on the track material condition and tribological behaviour


Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens


Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices


Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers


Photomemristive heterostructures based on two-dimensional crystals


Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers


Graphene and doped graphene: A comparative DFT study


Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye


Optimization of acid hydrolysis process for the preparation cellulose nanofibrils


Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin


Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel


Previous issues

9th Anniversary of Advanced Materials Letters: Progress and Opportunities

Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries

Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Bottom-up design of hydrogels through click-chemistry modification of magnetic nanoparticles

Visualization of mechanical loads with semiconductor nanocrystals 

Room temperature growth of ultra porous hot-wire deposited tantalum pentoxide

Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory

Innovative silicon compatible materials for light emitting devices  

Graphene micromesh for transparent conductive films application 

Applications of nano-scale Cirrus DopantTM to improve existing coatings

Chitin nanofibrils in renewable materials for packaging and personal care applications

Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics

Upcoming Congress

Knowledge Experience at Sea TM